留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤布拉格光栅长外腔反馈半导体激光器特性研究

张云豪 刘奎 郜江瑞 王军民

张云豪, 刘奎, 郜江瑞, 王军民. 光纤布拉格光栅长外腔反馈半导体激光器特性研究[J]. 中国光学(中英文), 2024, 17(5): 1035-1041. doi: 10.37188/CO.2024-0016
引用本文: 张云豪, 刘奎, 郜江瑞, 王军民. 光纤布拉格光栅长外腔反馈半导体激光器特性研究[J]. 中国光学(中英文), 2024, 17(5): 1035-1041. doi: 10.37188/CO.2024-0016
ZHANG Yun-hao, LIU Kui, GAO Jiang-rui, WANG Jun-min. Characteristics of a distributed feedback diode laser with feedback from a fiber-Bragg-grating-based long external cavity[J]. Chinese Optics, 2024, 17(5): 1035-1041. doi: 10.37188/CO.2024-0016
Citation: ZHANG Yun-hao, LIU Kui, GAO Jiang-rui, WANG Jun-min. Characteristics of a distributed feedback diode laser with feedback from a fiber-Bragg-grating-based long external cavity[J]. Chinese Optics, 2024, 17(5): 1035-1041. doi: 10.37188/CO.2024-0016

光纤布拉格光栅长外腔反馈半导体激光器特性研究

基金项目: 国家自然科学基金项目(No. 11974226);山西省基础研究计划资助项目(No. 202403021211013)
详细信息
    作者简介:

    张云豪(1997—),男,山西长子人,2019年于太原师范学院获得学士学位,现为山西大学光学专业硕博连读研究生,主要从事激光技术、量子精密测量方面的研究。E-mail:202312607033@email.sxu.edu.cn

    王军民(1967—),男,山西河曲人,理学博士,教授,博士生导师,1992年、1999年于山西大学光学专业分别获得理学硕士学位、理学博士学位。目前主要从事量子光学、量子技术、量子精密测量、量子增强光泵原子磁强计、激光技术等方面的研究工作。E-mail:wwjjmm@sxu.edu.cn

  • 中图分类号: O432.1+2

Characteristics of a distributed feedback diode laser with feedback from a fiber-Bragg-grating-based long external cavity

Funds: Supported by the National Natural Science Foundation of China (No. 11974226); Foundation Research Program of Shanxi Province (No. 202403021211013)
More Information
  • 摘要:

    窄线宽激光器是光谱学和精密计量学等实验的基本组成部分。由于半导体激光器对外部光学反馈十分敏感,所以可以利用光反馈的高带宽抑制半导体激光器的相位噪声,进而压窄线宽。本文采用光纤布拉格光栅作为反馈元件,搭建了长外腔反馈回路。为了降低外界环境温度起伏和气流扰动的影响,对反馈光路的光纤控温,使得1小时内最大温度起伏从0.039 °C降低到0.003 °C。此外,测试了反馈带宽对激光线宽的影响,尽管实验所用光纤布拉格光栅的带宽远大于自由运转的激光线宽,但仍然可以观察到激光线宽被压窄,且光纤光栅的带宽越小,激光线宽越窄。对于此现象,分析认为在反馈回路中应该存在一种负反馈机制,可以将激光线宽稳定到反馈光谱的某个斜率处,所以光纤光栅的反馈带宽越窄,反馈光谱的斜率越大,反馈越灵敏。通过调整光纤光栅的反馈功率在0~1 mW范围内改变,观察到当反射功率为0.8 mW时,光反馈将激光线宽从自由运转的100.5 kHz压窄到最窄的11.5 kHz,0.2 kHz~2 MHz范围内的相位噪声降低约20 dB。

     

  • 图 1  FBG结构和测试示意图

    Figure 1.  Schematic of FBG structure and test

    图 2  具有光反馈的完整激光系统示意图

    Figure 2.  Schematic diagram of complete laser system with optical feedback

    图 3  两种条件下两段光纤的温度起伏

    Figure 3.  Temperature fluctuations of two optical fibers under the conditions with and without temperature control

    图 4  激光器自由运转的拍频谱

    Figure 4.  The beat note of the laser during free-running spectrum

    图 5  0.130-nm带宽 FBG在反射功率为0.8 mW时的拍频谱

    Figure 5.  The beat note spectrum of 0.130-nm bandwidth FBG at reflected power of 0.8 mW

    图 6  两个FBG的反射率随波长的变化

    Figure 6.  The reflectivity of two FBGs vary with wavelength

    图 7  激光线宽随两个不同带宽的FBG的反射功率的变化情况(0.130 nm和0.195 nm)

    Figure 7.  The laser linewidth varies with the reflected power of two FBGs with different bandwidths (0.130 nm and 0.195 nm)

    图 8  相位噪声向强度噪声转化的曲线

    Figure 8.  Curve of phase noise conversion to intensity noise

    图 9  激光位相噪声功率的频域分布

    Figure 9.  Frequency domain distribution of laser phase noise power

  • [1] LIN Q, VAN CAMP M A, ZHANG H, et al. Long-external-cavity distributed Bragg reflector laser with subkilohertz intrinsic linewidth[J]. Optics Letters, 2012, 37(11): 1989-1991. doi: 10.1364/OL.37.001989
    [2] KAPASI D P, EICHHOLZ J, MCRAE T, et al. Tunable narrow-linewidth laser at 2 μm wavelength for gravitational wave detector research[J]. Optics Express, 2020, 28(3): 3280-3288. doi: 10.1364/OE.383685
    [3] ZHAO Y, LI Y, WANG Q, et al. 100-Hz linewidth diode laser with external optical feedback[J]. IEEE Photonics Technology Letters, 2012, 24(20): 1795-1798. doi: 10.1109/LPT.2012.2214029
    [4] 刘云凤, 梁伟. 自注入锁定外腔超窄线宽半导体激光[J]. 中国激光,2021,48(17):1715001. doi: 10.3788/CJL202148.1715001

    LIU Y F, LIANG W. Compact narrow linewidth external cavity semiconductor laser realized by self-injection locking to Fabry-Perot cavity[J]. Chinese Journal of Lasers, 2021, 48(17): 1715001. (in Chinese). doi: 10.3788/CJL202148.1715001
    [5] RAUCH S, SACHER J. Compact Bragg grating stabilized ridge waveguide laser module with a power of 380 mW at 780 nm[J]. IEEE Photonics Technology Letters, 2015, 27(16): 1737-1740. doi: 10.1109/LPT.2015.2438545
    [6] KONG J, LUCIVERO V G, JIMÉNEZ-MARTÍNEZ R, et al. Long-term laser frequency stabilization using fiber interferometers[J]. Review of Scientific Instruments, 2015, 86(7): 073104. doi: 10.1063/1.4926345
    [7] 潘碧玮, 余力强, 陆丹, 等. 20 kHz窄线宽光纤光栅外腔半导体激光器[J]. 中国激光,2015,42(5):0502007. doi: 10.3788/CJL201542.0502007

    PAN B W, YU L Q, LU D, et al. 20 kHz narrow linewidth Fiber Bragg grating external cavity semiconductor laser[J]. Chinese Journal of Lasers, 2015, 42(5): 0502007. (in Chinese). doi: 10.3788/CJL201542.0502007
    [8] 孙广伟, 魏芳, 张丽, 等. 基于保偏光纤光栅的低噪声外腔半导体激光器[J]. 中国激光,2018,45(6):0601004. doi: 10.3788/CJL201845.0601004

    SUN G W, WEI F, ZHANG L, et al. Low-noise external cavity semiconductor lasers based on polarization-maintaining fiber Bragg gratings[J]. Chinese Journal of Lasers, 2018, 45(6): 0601004. (in Chinese). doi: 10.3788/CJL201845.0601004
    [9] SAMUTPRAPHOOT P, WEBER S, LIN Q, et al. Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback[J]. Optics Express, 2014, 22(10): 11592-11599. doi: 10.1364/OE.22.011592
    [10] HILL K O, FUJII Y, JOHNSON D C, et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10): 647-649. doi: 10.1063/1.89881
    [11] 白建东, 王杰英, 王军民. 基于光纤延时声光频移自差拍法快速测量激光线宽[J]. 激光与光电子学进展,2016,53(6):061407.

    BAI J D, WANG J Y, WANG J M. Rapid measurement of laser linewidth based on Fiber-Delayed AOM-shifted self-heterodyne scheme[J]. Laser & Optoelectronics Progress, 2016, 53(6): 061407. (in Chinese).
    [12] 尹增谦, 武臣, 宫琬钰, 等. Voigt线型函数及其最大值的研究[J]. 物理学报,2013,62(12):123301. doi: 10.7498/aps.62.123301

    YIN Z Q, WU CH, GONG W Y, et al. Voigt profile function and its maximum[J]. Acta Physica Sinica, 2013, 62(12): 123301. (in Chinese). doi: 10.7498/aps.62.123301
    [13] HENRY C. Phase noise in semiconductor lasers[J]. Journal of Lightwave Technology, 1986, 4(3): 298-311. doi: 10.1109/JLT.1986.1074721
    [14] AOYAMA K, YOKOTA N, YASAKA H. Strategy of optical negative feedback for narrow linewidth semiconductor lasers[J]. Optics Express, 2018, 26(16): 21159-21169. doi: 10.1364/OE.26.021159
    [15] 齐翔羽. 窄线宽半导体激光器相频噪声和线宽特性研究[D]. 长春: 长春理工大学, 2019.

    QI X Y. Research on phase-frequency noise and linewidth characteristics of narrow linewidth semiconductor laser[D]. Changchun: Changchun University of Science and Technology, 2019. (in Chinese).
    [16] 张云, 张天才, 李廷鱼, 等. 法布里-珀罗腔对相位噪声测量的影响[J]. 光学学报,2000,20(4):465-471.

    ZHANG Y, ZHANG T C, LI T Y, et al. Phase noise measurement by F-P cavity[J]. Acta Optica Sinica, 2000, 20(4): 465-471. (in Chinese).
  • 加载中
图(9)
计量
  • 文章访问数:  275
  • HTML全文浏览量:  104
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-15
  • 修回日期:  2024-01-31
  • 录用日期:  2024-03-08
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回