留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PbS量子点光电探测器的脉搏检测系统研究

李力 耿会娟 张天昊 朱建平

李力, 耿会娟, 张天昊, 朱建平. 基于PbS量子点光电探测器的脉搏检测系统研究[J]. 中国光学(中英文), 2024, 17(5): 1236-1243. doi: 10.37188/CO.2024-0018
引用本文: 李力, 耿会娟, 张天昊, 朱建平. 基于PbS量子点光电探测器的脉搏检测系统研究[J]. 中国光学(中英文), 2024, 17(5): 1236-1243. doi: 10.37188/CO.2024-0018
LI Li, GENG Hui-juan, ZHANG Tian-hao, ZHU Jian-ping. Research on pulse detection system based on PbS quantum dot photodetector[J]. Chinese Optics, 2024, 17(5): 1236-1243. doi: 10.37188/CO.2024-0018
Citation: LI Li, GENG Hui-juan, ZHANG Tian-hao, ZHU Jian-ping. Research on pulse detection system based on PbS quantum dot photodetector[J]. Chinese Optics, 2024, 17(5): 1236-1243. doi: 10.37188/CO.2024-0018

基于PbS量子点光电探测器的脉搏检测系统研究

基金项目: 上海市自然科学基金(No. 19ZR1426900);上海交通大学深蓝计划(No. SL2020MS001);河南省科技攻关项目(No. 242102240050)
详细信息
    作者简介:

    朱建平(1977—),女,上海人,博士,副教授,硕士生导师,主要从事无线传感器、检测技术研究工作。E-mail:jp-zhu@shou.edu.cn

  • 中图分类号: TP212.9

Research on pulse detection system based on PbS quantum dot photodetector

Funds: Supported by the Shanghai Natural Science Foundation (No. 19ZR1426900); Shanghai Jiao Tong University Deep Blue Program (No. SL2020MS001); Henan Province Science and Technology Research Project (No. 242102240050)
More Information
  • 摘要:

    脉搏蕴含人体丰富的血流信息,检测脉搏并推导出人体心血管系统健康状态正成为研究的热点。本文利用热注射法合成得到尺寸为3 nm的PbS量子点,在金叉指电极表面通过旋涂的方法构筑PbS量子点光电探测器。基于已制备的PbS量子点光电探测器研制了数据可视化的脉搏检测系统。运用光电容积脉搏波描记法,对同一测试者不同运动状态以及不同测试者同一运动状态进行测量,经过电路处理将测得的数据显示在电子显示屏上。结果表明,探测器在15.2 μW·cm−2光强度照射下,其响应度(R)和探测率(D*)在−3 V偏压下分别为0.33 A/W和1.33×1012 Jones。将其应用于测量脉搏电路中,系统能够有效接收并测得人体脉搏信号。上述结果表明基于PbS量子点光电探测器的脉搏检测系统在灵敏度、稳定性以及可靠性均满足应用要求。

     

  • 图 1  可视化脉搏检测系统前端电路原理图

    Figure 1.  Schematic diagram of the front-end circuit of the visual pulse detection system

    图 2  PbS光电探测器的各项测试结果。(a) 所制备材料的XRD数据图;(b) PbS量子点的TEM图,插图为PbS量子点的直径大小分布直方图;(c) PbS光电探测器的SEM图;(d) PbS光电探测器的SEM-EDS图

    Figure 2.  Performance test results of photodetector. (a) XRD data of PbS quantum dots; (b) TEM of PbS quantum dots, the illustration is a histogram showing the distribution of diameter sizes of PbS quantum dots, (c) SEM of PbS photodetectors, (d) SEM-EDS of PbS photodetector

    图 3  (a) PbS量子点光电探测器在不同光功率密度下的电流-电压(I-V)图;(b) −3 V偏压下PbS量子点光电探测器在不同光功率密度下的电流-时间(I-T)图;(c) PbS量子点光电探测器在9390 μW·cm−2光强下的响应时间图;(d) PbS光电探测器件在不同光功率密度下的响应度曲线图和比探测率曲线图

    Figure 3.  (a) Current-voltage (I-V) diagram of PbS quantum dot photodetector at different optical power densities; (b) current-time (I-T) diagram of PbS quantum dot photodetector at different optical power densities when bias is −3 V; (c) response time of PbS quantum dot photodetector at 9390 μW·cm−2 light intensity, (d) responsivity curve and specific detection rate curve of PbS photodetector at different optical power densities

    图 4  (a) 基于PbS量子点光电探测器的可视化脉搏检测系统实物图;(b) 系统实测时电子显示屏显示图

    Figure 4.  (a) The physical image of the visual pulse detection system based on the PbS quantum dot photodetector; (b) the display diagram of the electronic display screen during the actual measurement of the system

    图 5  同一测试者不同运动状态时的脉搏变化图

    Figure 5.  Pulse changes of the same test subject at different motor states

    图 6  (a) 不同测试者同一运动状态的脉搏变化图;(b) 同一测试者不同测试时间的脉搏变化图

    Figure 6.  (a) Pulse change plot of different testers at the same exercise state; (b) pulse change plot of the same tester at different test times

    图 7  同一测试者不同检测系统的电压示意图

    Figure 7.  Voltage diagram of the same tester tested by different test systems

    表  1  两种系统脉搏检测结果统计表

    Table  1.   Statistical table of pulse test results of the two systems (Unit: times/minute)

    名称第一次测试第二次测试第三次测试
    PbS量子点光电探测器637368
    gladstone647073
    下载: 导出CSV
  • [1] ARNOLD C G, WALKER J R, METTER E J, et al. Pulse oximeter plethysmograph waveform and automated oscillometric sphygmomanometer for ankle-brachial index measurement[J]. The American Journal of Emergency Medicine, 2021, 40: 162-165. doi: 10.1016/j.ajem.2020.10.042
    [2] FINE J, BRANAN K L, RODRIGUEZ A J, et al. Sources of inaccuracy in photoplethysmography for continuous cardiovascular monitoring[J]. Biosensors, 2021, 11(4): 126. doi: 10.3390/bios11040126
    [3] CHOI S H, KIM S Y, PARK S H, et al. Diagnostic performance of CT, gadoxetate disodium-enhanced MRI, and PET/CT for the diagnosis of colorectal liver metastasis: Systematic review and meta-analysis[J]. Journal of Magnetic Resonance Imaging, 2018, 47(5): 1237-1250. doi: 10.1002/jmri.25852
    [4] JUNG H, KIM D, LEE W, et al. Performance evaluation of a wrist-worn reflectance pulse oximeter during sleep[J]. Sleep Health, 2022, 8(5): 420-428. doi: 10.1016/j.sleh.2022.04.003
    [5] WANG J, ZHU Y R, WU Z Y, et al. Wearable multichannel pulse condition monitoring system based on flexible pressure sensor arrays[J]. Microsystems & Nanoengineering, 2022, 8(1): 16.
    [6] 陈星池, 赵海, 李晗, 等. 近红外可穿戴设备中脉搏波的呼吸率检测[J]. 光学 精密工程,2016,24(6):1297-1306. doi: 10.3788/OPE.20162406.1297

    CHEN X C, ZHAO H, LI H, et al. Detection of respiratory rate using pulse wave on near infrared wearable devices[J]. Optics and Precision Engineering, 2016, 24(6): 1297-1306. (in Chinese). doi: 10.3788/OPE.20162406.1297
    [7] 张丽娜, 周润景, 武佩, 等. 基于心电、脉搏波信号的动脉硬化无创检测[J]. 生物医学工程学杂志,2016,33(4):631-638,644. doi: 10.7507/1001-5515.20160105

    ZHANG L N, ZHOU R J, WU P, et al. Study on non-invasive detection of atherosclerosis based on electrocardiogram and pulse wave signals[J]. Journal of Biomedical Engineering, 2016, 33(4): 631-638,644. (in Chinese). doi: 10.7507/1001-5515.20160105
    [8] MOÇO A, VERKRUYSSE W. Pulse oximetry based on photoplethysmography imaging with red and green light: Calibratability and challenges[J]. Journal of Clinical Monitoring and Computing, 2021, 35(1): 123-133. doi: 10.1007/s10877-019-00449-y
    [9] CHARLTON P H, PILT K, KYRIACOU P A. Establishing best practices in photoplethysmography signal acquisition and processing[J]. Physiological Measurement, 2022, 43(5): 050301. doi: 10.1088/1361-6579/ac6cc4
    [10] MOÇO A V, STUIJK S, DE HAAN G. New insights into the origin of remote PPG signals in visible light and infrared[J]. Scientific Reports, 2018, 8(1): 8501. doi: 10.1038/s41598-018-26068-2
    [11] 吴育东, 钟舜聪, 伏喜斌. 基于光电容积脉搏波的血压测量实验研究[J]. 机电工程,2017,34(8):865-869. doi: 10.3969/j.issn.1001-4551.2017.08.010

    WU Y D, ZHONG S C, FU X B. Blood pressure measurement based on photoelectric volume pulse wave[J]. Journal of Mechanical & Electrical Engineering, 2017, 34(8): 865-869. (in Chinese). doi: 10.3969/j.issn.1001-4551.2017.08.010
    [12] MAEDA Y, SEKINE M, TAMURA T, et al. Comparison of reflected green light and infrared photoplethysmography[C]. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2008: 2270-2272.
    [13] HUANG Y T, LIANG H F, ZHANG Y L, et al. Vertical tip-to-tip interconnection p–n silicon nanowires for plasmonic hot electron-enhanced broadband photodetectors[J]. ACS Applied Nano Materials, 2021, 4(2): 1567-1575. doi: 10.1021/acsanm.0c03048
    [14] 朱晓秀, 葛咏, 李建军, 等. 量子点增强硅基探测成像器件的研究进展[J]. 中国光学,2020,13(1):62-74. doi: 10.3788/co.20201301.0062

    ZHU X X, GE Y, LI J J, et al. Research progress of quantum dot enhanced silicon-based photodetectors[J]. Chinese Optics, 2020, 13(1): 62-74. (in Chinese). doi: 10.3788/co.20201301.0062
    [15] HOU B, KIM B S, LEE H K H, et al. Multiphoton absorption stimulated metal chalcogenide quantum dot solar cells under ambient and concentrated irradiance[J]. Advanced Functional Materials, 2020, 30(39): 2004563. doi: 10.1002/adfm.202004563
    [16] HU A Q, TIAN H J, LIU Q L, et al. Graphene on self-assembled ingan quantum dots enabling ultrahighly sensitive photodetectors[J]. Advanced Optical Materials, 2019, 7(8): 1801792. doi: 10.1002/adom.201801792
    [17] TANG J F, SIE Y D, TSENG Z L, et al. Perovskite quantum dot–ZnO nanowire composites for ultraviolet–visible photodetectors[J]. ACS Applied Nano Materials, 2022, 5(5): 7237-7245. doi: 10.1021/acsanm.2c01145
    [18] TETSUKA H, NAGOYA A, TAMURA S I. Graphene/nitrogen-functionalized graphene quantum dot hybrid broadband photodetectors with a buffer layer of boron nitride nanosheets[J]. Nanoscale, 2016, 8(47): 19677-19683. doi: 10.1039/C6NR07707B
    [19] DONG R, BI C, DONG Q F, et al. An ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain[J]. Advanced Optical Materials, 2014, 2(6): 549-554. doi: 10.1002/adom.201400023
    [20] 许峻峰. 硫化铅量子点薄膜光电器件的性能提升[D]. 北京: 北京理工大学, 2018.

    XU J F. Performance enhancement of PbS quantum dots based thin-film optoelectronic devices[D]. Beijing: Beijing Institute of Technology, 2018. (in Chinese).
    [21] LUO M T, CHEN R, ZHU Z W, et al. A broadband photodetector based on PbS quantum dots and graphene with high responsivity and detectivity[J]. Nanomaterials, 2023, 13(13): 1996. doi: 10.3390/nano13131996
    [22] CHEN H, CHEN J. High performance near-infrared photodetector based on PbS quantum dots and graphene[J]. Sensors and Actuators A: Physical, 2022, 339: 113508. doi: 10.1016/j.sna.2022.113508
    [23] SONI A K, JOSHI R, NINGTHOUJAM R S. Hot Injection Method for Nanoparticle Synthesis: Basic Concepts, Examples And Applications[M]//TYAGI A K, NINGTHOUJAM R S. Handbook on Synthesis Strategies for Advanced Materials. Singapore: Springer, 2021: 383–434.
    [24] WU C Y, ZHU H N, WANG M, et al. Controlled synthesis of GaSe microbelts for high-gain photodetectors induced by the electron trapping effect[J]. Journal of Materials Chemistry C, 2020, 8(16): 5375-5379. doi: 10.1039/D0TC01120G
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  114
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-17
  • 修回日期:  2024-02-22
  • 录用日期:  2024-04-26
  • 网络出版日期:  2024-05-14

目录

    /

    返回文章
    返回