留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进丰富卷积特征算法的液滴边缘检测模型

王慧 曹召良 王军

王慧, 曹召良, 王军. 改进丰富卷积特征算法的液滴边缘检测模型[J]. 中国光学(中英文), 2024, 17(4): 886-895. doi: 10.37188/CO.2024-0019
引用本文: 王慧, 曹召良, 王军. 改进丰富卷积特征算法的液滴边缘检测模型[J]. 中国光学(中英文), 2024, 17(4): 886-895. doi: 10.37188/CO.2024-0019
WANG Hui, CAO Zhao-liang, WANG Jun. Improved droplet edge detection model based on RCF algorithm[J]. Chinese Optics, 2024, 17(4): 886-895. doi: 10.37188/CO.2024-0019
Citation: WANG Hui, CAO Zhao-liang, WANG Jun. Improved droplet edge detection model based on RCF algorithm[J]. Chinese Optics, 2024, 17(4): 886-895. doi: 10.37188/CO.2024-0019

改进丰富卷积特征算法的液滴边缘检测模型

cstr: 32171.14.CO.2024-0019
基金项目: “十四五”江苏省重点学科资助(No. 2021135);中国航天科技集团公司第八研究院产学研合作基金资助(No. SAST2020-025)
详细信息
    作者简介:

    王 军(1979—),男,江苏睢宁人,博士,副教授,2005年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光电测控技术、图像信息处理技术以及物联网工程应用方面的研究。E-mail:wjyhl@126.com

  • 中图分类号: TP394.4;TH691.9

Improved droplet edge detection model based on RCF algorithm

Funds: Supported by Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135); Industry-University-Institute Cooperation Foundation of the Eighth Research Institute of China Aerospace Science and Technology Corporation (No. SAST2020-025)
More Information
  • 摘要:

    液滴图像边缘的高精度提取是测量水接触角较为关键的一环,针对常规边缘提取方法噪声鲁棒性差、边缘提取不完整、精度低的问题,本文提出了一种改进丰富卷积特征(RCF)的液滴边缘检测模型。首先,在深度特征提取阶段引入特征融合模块,使用多个特征让模型更加鲁棒,减少过拟合的风险;其次,设计多感受野模块代替RCF后边的contact层,通过多个感受野来提取更多的语义信息,使边缘细节更加丰富;然后,在模型每一层之前引入高效通道注意力机制,增强模型对图像中重要特征的关注程度;最后,设计并引入MaxBlurPool下采样技术,减少计算量和参数量,提高平移不变性。在自制液滴数据集上的实验结果表明,本文模型的固定轮廓阈值(ODS)提高到0.816、单图像最佳阈值(OIS)提高到0.829、检测准确率高达90.17%,相较原模型提高了1.85个百分点,能够准确检测液滴边缘特征。

     

  • 图 1  RCF模型结构

    Figure 1.  RCF model structure

    图 2  改进的RCF模型结构

    Figure 2.  Improved RCF model structure

    图 3  特征融合

    Figure 3.  Feature fusion

    图 4  多感受野模块

    Figure 4.  Multi-receptive field module

    图 5  高效注意力机制模块

    Figure 5.  Efficient attention mechanism module

    图 6  抗锯齿的最大池化

    Figure 6.  Anti-aliasing for maximum pooling

    图 7  一维抗锯齿操作

    Figure 7.  One-dimensional anti-aliasing operation

    图 8  数据样本

    Figure 8.  Data samples

    图 9  传统RCF损失值与迭代次数的关系

    Figure 9.  Relationship between the loss and the number of iterations in the conventional RCF algorithm

    图 10  改进RCF损失值与迭代次数的关系

    Figure 10.  Relationship between the loss and the number of iterations in the improved RCF algorithm

    图 11  较小角度液滴边缘检测结果

    Figure 11.  Edge detection results for small-angle liquid droplet

    图 12  较大角度液滴边缘检测结果

    Figure 12.  Edge detection results for large-angle liquid droplet

    表  1  改进模型各阶段性能

    Table  1.   Performance of the improved model at each stage

    Each stagePrecision/%Recall/%F-measure/%
    Stage172.2673.3872.82
    Stage278.3181.6979.96
    Stage385.6587.4186.52
    Stage488.9289.1589.03
    Mixed Output90.1789.6489.90
    下载: 导出CSV

    表  2  本文模型与其他算法结果比较

    Table  2.   Results comparison of the proposed model and other relevant algorithms

    Algorithm Precision/% ODS OIS OR/% Time/s
    Canny 81.02 0.717 0.642 11.25 0.015
    HED 87.49 0.732 0.735 7.36 0.025
    RCF 88.32 0.783 0.792 6.74 0.028
    Improved-RCF 90.17 0.816 0.829 5.10 0.041
    下载: 导出CSV

    表  3  消融实验结果对比

    Table  3.   Comparison of ablation experimental results

    ModuleODSOIS
    BasicRCF0.7830.792
    BasicRCF+FM0.7950.812
    BasicRCF+FM+DC0.8090.817
    BasicRCF+FM+DC+EN0.8110.823
    BasicRCF+FM+DC+EN+MP0.8160.829
    下载: 导出CSV
  • [1] 周文婷. 仿生超润湿材料的制备及其高粘度原油水分离性能研究[D]. 长春: 吉林大学, 2023.

    ZHOU W T. Preparation of bionic superwetting material and its high viscosity crude oil-water separation performance[D]. Changchun: Jilin University, 2023. (in Chinese).
    [2] 黄云, 黄建超, 肖贵坚, 等. 超疏水表面加工技术及耐磨性能研究进展[J]. 中国机械工程,2024,35(1):2-26.

    HUANG Y, HUANG J CH, XIAO G J, et al. Research progresses of superhydrophobic surface processing technology and abrasion resistance[J]. China Mechanical Engineering, 2024, 35(1): 2-26. (in Chinese).
    [3] 郭伟成, 廖元太, 张洪玉. 润滑水凝胶涂层研究进展[J]. 清华大学学报(自然科学版),2024,64(3):381-392.

    GUO W CH, LIAO Y T, ZHANG H Y. Research progress in lubricating hydrogel coatings[J]. Journal of Tsinghua University (Science and Technology), 2024, 64(3): 381-392. (in Chinese).
    [4] 王晓辉, 李军建, 杨威, 等. 接触角的图像处理与检测[J]. 光电子技术,2011,31(1):14-19. doi: 10.3969/j.issn.1005-488X.2011.01.004

    WANG X H, LI J J, YANG W, et al. Measurement on contact angles based on image process[J]. Optoelectronic Technology, 2011, 31(1): 14-19. (in Chinese). doi: 10.3969/j.issn.1005-488X.2011.01.004
    [5] 张天, 田汉民, 戎小莹, 等. 粒子群优化Canny算子在高精度接触角测量中的应用研究[J]. 河北工业大学学报,2018,47(3):30-35.

    ZHANG T, TIAN H M, RONG X Y, et al. Edge detection of Canny operator based on PSO[J]. Journal of Hebei University of Technology, 2018, 47(3): 30-35. (in Chinese).
    [6] ROSENFELD A, THURSTON M. Edge and curve detection for visual scene analysis[J]. IEEE Transactions on Computers, 1971, C-20(5): 562-569. doi: 10.1109/T-C.1971.223290
    [7] MARR D, HILDRETH E. Theory of edge detection[J]. Proceedings of the Royal Society B: Biological Sciences, 1980, 207(1167): 187-217.
    [8] 王惠琴, 侯文斌, 黄瑞, 等. 基于深度学习的空间脉冲位置调制多分类检测器[J]. 中国光学(中英文),2023,16(2):415-424. doi: 10.37188/CO.2022-0106

    WANG H Q, HOU W B, HUANG R, et al. Spatial pulse position modulation multi-classification detector based on deep learning[J]. Chinese Optics, 2023, 16(2): 415-424. (in Chinese). doi: 10.37188/CO.2022-0106
    [9] 张印辉, 庄宏, 何自芬, 等. 氨气泄漏混洗自注意力轻量化红外检测[J]. 中国光学(中英文),2023,16(3):607-619. doi: 10.37188/CO.2022-0127

    ZHANG Y H, ZUANG H, HE Z F, et al. Lightweight infrared detection of ammonia leakage using shuffle and self-attention[J]. Chinese Optics, 2023, 16(3): 607-619. (in Chinese). doi: 10.37188/CO.2022-0127
    [10] ARBELÁEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898-916. doi: 10.1109/TPAMI.2010.161
    [11] 李翠锦, 瞿中. 基于深度学习的图像边缘检测算法综述[J]. 计算机应用,2020,40(11):3280-3288. doi: 10.11772/j.issn.1001-9081.2020030314

    LI C J, QU ZH. Review of image edge detection algorithms based on deep learning[J]. Journal of Computer Applications, 2020, 40(11): 3280-3288. (in Chinese). doi: 10.11772/j.issn.1001-9081.2020030314
    [12] REN X F, BO L F. Discriminatively trained sparse code gradients for contour detection[C]. Proceedings of the 25th International Conference on Neural Information Processing Systems, Curran Associates Inc. , 2012: 584-592.
    [13] XIE S N, TU ZH W. Holistically-nested edge detection[J]. International Journal of Computer Vision, 2017, 125(1-3): 3-18. doi: 10.1007/s11263-017-1004-z
    [14] 简柯青. 目标物体的轮廓识别关键技术研究[D]. 成都: 电子科技大学, 2022.

    JIAN K Q. Research on key technologies of object contour detection[D]. Chengdu: University of Electronic Science and Technology of China, 2022. (in Chinese).
    [15] LIU Y, CHENG M M, HU X W, et al. Richer convolutional features for edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1939-1946. doi: 10.1109/TPAMI.2018.2878849
    [16] 周聪. 基于立体视觉的光通信器件空间缺陷检测方法研究[D]. 武汉: 华中科技大学, 2022.

    ZHOU C. Research on spatial defect detection methods of optical communication devices based on stereo vision[D]. Wuhan: Huazhong University of Science and Technology, 2022. (in Chinese).
    [17] 朱淑鑫, 周子俊, 顾兴健, 等. 基于RCF网络的遥感图像场景分类研究[J]. 激光与光电子学进展,2021,58(14):1401001.

    ZHU SH X, ZHOU Z J, GU X J, et al. Scene classification of remote sensing images based on RCF network[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1401001. (in Chinese).
    [18] 姜林奇, 宁春玉, 余海涛. 基于多尺度特征与通道特征融合的脑肿瘤良恶性分类模型[J]. 中国光学(中英文),2022,15(6):1339-1349. doi: 10.37188/CO.2022-0067

    JIANG L Q, NING CH Y, YU H T. Classification model based on fusion of multi-scale feature and channel feature for benign and malignant brain tumors[J]. Chinese Optics, 2022, 15(6): 1339-1349. (in Chinese). doi: 10.37188/CO.2022-0067
    [19] 景年昭, 杨维. 基于RCF的精细边缘检测模型[J]. 计算机应用,2019,39(9):2535-2540. doi: 10.11772/j.issn.1001-9081.2019030462

    JING N ZH, YANG W. Fine edge detection model based on RCF[J]. Journal of Computer Applications, 2019, 39(9): 2535-2540. (in Chinese). doi: 10.11772/j.issn.1001-9081.2019030462
    [20] 陈浩. 面向非控制环境的自动抠像方法研究[D]. 南昌: 江西师范大学, 2021.

    CHEN H. Research on automatic keying method for non-controlled environment[D]. Nanchang: Jiangxi Normal University, 2021. (in Chinese).
    [21] 黄晨耕. 结合浅层特征与深层特征的光学遥感舰船检测方法研究[D]. 南京: 南京航空航天大学, 2021.

    HUANG CH G. Research on optical remote sensing ship detection method combining low-level features and high-level features[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. (in Chinese).
    [22] 张宝, 李小霞, 张婧, 等. 多路感受野引导的特征金字塔小目标检测方法[J]. 制造业自动化,2022,44(11):155-159. doi: 10.3969/j.issn.1009-0134.2022.11.037

    ZHANG B, LI X X, ZHANG J, et al. Small target detection method with multiple receptove firlds guided feature pyramid network[J]. Manufacturing Automation, 2022, 44(11): 155-159. (in Chinese). doi: 10.3969/j.issn.1009-0134.2022.11.037
    [23] 杨晨, 侯志强, 李新月, 等. 基于CNN-Transformer双模态特征融合的目标检测算法[J]. 光子学报,2024,53(3):0310001.

    YANG CH, HOU ZH Q, LI X Y, et al. Object detection algorithm based on CNN-transformer dual modal feature fusion[J]. Acta Photonica Sinica, 2024, 53(3): 0310001. (in Chinese).
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  101
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-18
  • 修回日期:  2024-01-30
  • 录用日期:  2024-03-15
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回