留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大口径宽温反射镜中心支撑结构设计

袁健 裴思宇 霍占伟 张冠宸 张雷

袁健, 裴思宇, 霍占伟, 张冠宸, 张雷. 大口径宽温反射镜中心支撑结构设计[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0060
引用本文: 袁健, 裴思宇, 霍占伟, 张冠宸, 张雷. 大口径宽温反射镜中心支撑结构设计[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0060
YUAN Jian, PEI Si-yu, HUO Zhan-wei, ZHANG Guan-chen, ZHANG Lei. Design of the central support structure of a large aperture mirror with a wide working temperature[J]. Chinese Optics. doi: 10.37188/CO.2024-0060
Citation: YUAN Jian, PEI Si-yu, HUO Zhan-wei, ZHANG Guan-chen, ZHANG Lei. Design of the central support structure of a large aperture mirror with a wide working temperature[J]. Chinese Optics. doi: 10.37188/CO.2024-0060

大口径宽温反射镜中心支撑结构设计

cstr: 32171.14.CO.2024-0060
基金项目: 吉林省科技发展计划资助项目(No. 20210509052RQ)
详细信息
    作者简介:

    袁 健(1990—),男,吉林通化人,博士,副研究员,2020年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事精密仪器光机结构设计方面的研究。E-mail:yuanjian@jl1.cn

    张 雷(1982—),男,山东菏泽人,博士,研究员,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光学遥感卫星总体技术方面的研究。E-mail:zhanglei@jl1.cn

  • 中图分类号: V447.1

Design of the central support structure of a large aperture mirror with a wide working temperature

Funds: Supported by Science and Technology Development Plan Project of Jilin Province (No. 20210509052RQ)
More Information
  • 摘要:

    为提升低轨卫星与地面站间激光链路的通信质量,商业地面站内望远镜配备的大口径主镜需适应户外环境中恶劣的温度条件。针对某通光口径$\Phi $500 mm的高精度主镜组件,提出一种使用室温硫化硅橡胶的中心支撑方案。镜体采用微晶材料,衬套和支撑筒均为钛合金材质。1 mm厚的胶层在卸载镜体自身重力的同时,可有效减小组件内部热应力。胶层的厚度和高度可通过仿真优化确定,特制的粘接工装可准确控制胶层形状和厚度,衬套上的通气孔促进了胶层的充分固化。仿真分析表明:主镜在40 °C温度均匀变化工况下的面形精度RMS值为4.199 nm;光轴竖直重力工况下的RMS值为13.748 nm;光轴水平重力工况下的RMS值为4.187 nm,镜体最大倾角和位移分别为4.722″和3.597 μm,组件基频达到53.45 Hz;实测主镜的面形精度为RMS 0.017λ (λ=632.8 nm),经大范围高低温循环试验及真空镀膜后,主镜均可保持高精度面形。文中支撑结构可以显著提升高精度反射镜的温度适应能力,在地面大型光电设备中具有广阔的应用前景。

     

  • 图 1  反射镜热变形示意图

    Figure 1.  Schematic diagram of thermal deformation of mirror

    图 2  主镜组件中心支撑方案

    Figure 2.  Central supporting scheme for primary mirror assembly

    图 3  主镜组件有限元分析模型

    Figure 3.  FEA model of primary mirror assembly

    图 4  胶层高度对主镜面形精度的影响

    Figure 4.  Influence of adhesive layer height on primary mirror surface accuracy

    图 5  胶层厚度与主镜工作性能间的关系

    Figure 5.  Relationship between adhesive thickness and working performance of primary mirror

    图 6  变方位重力工况示意图

    Figure 6.  Schematic diagram of variable-orientation gravity conditions

    图 7  主镜组件RTV粘接工艺

    Figure 7.  RTV bonding process in primary mirror assembly

    图 8  主镜面形精度检测

    Figure 8.  Primary mirror’s surface accuracy test

    图 9  主镜组件稳定性试验

    Figure 9.  Stability test of primary mirror assembly

    图 10  主镜在商业地面站中的应用

    Figure 10.  Primary mirror’s application in commercial ground station

    表  1  商业地面站中主镜组件的主要设计指标

    Table  1.   Main design metrics for primary mirror components in commercial ground station

    No. Item Requirement
    1 Clear aperture Φ500 mm
    2 Elevation during pointing From horizontal to vertical
    3 Deformation under gravity Tilt: θX≤10″, θY≤10″
    Displacement: δX≤20 μm, δY≤20 μm
    4 Working temperature range −20 °C~40 °C
    5 Surface accuracy RMS≤1/30λ (λ=632.8 nm)
    6 Mass ≤30 kg
    7 Frequency ≥30 Hz
    下载: 导出CSV

    表  2  主镜组件材料物理属性

    Table  2.   Physical properties of primary mirror assembly components

    Property Mirror Adhesive Bushing Support
    Material & type Zerodur RTV TC4 TC4
    Density ρ (g·cm−3) 2.53 1.1 4.4 4.4
    Elastic modulus E (MPa) 91000 2.7 109000 109000
    Poisson ratio μ 0.24 0.47 0.34 0.34
    Thermal expansion
    coefficient α (10−6·K−1)
    0.1 185 9.1 9.1
    下载: 导出CSV

    表  3  主要工况下主镜仿真结果

    Table  3.   Primary mirror’s simulation results under main load cases (λ=632.8 nm)

    Load case Deformation/nm Displacement/ μm Tilt/″
    RMS δX δY δZ θX θY
    Temperature variation(40ºC) 4.199 0 0 58.325 0.008 0.008
    Horizontal gravity 4.187 3.597 0 0.001 0.235 4.722
    Vertical gravity 13.748 0 0 13.415 0.004 0.004
    Compound gravity(45°) 10.161 2.542 0 9.572 0.167 3.339
    Design Criterion ≤1/30λ ≤20 ≤20 / ≤10 ≤10
    下载: 导出CSV

    表  4  主镜组件模态分析结果

    Table  4.   Modal analysis results of primary mirror assembly

    Order Frequency/Hz Vibration mode
    1st 53.45 Rotation of mirror around Z axis
    2nd 66.09 Rotation of mirror around X axis
    3rd 66.10 Rotation of mirror around Y axis
    下载: 导出CSV

    表  5  主镜面形精度检测结果

    Table  5.   Primary mirror’s surface accuracy test results

    Surface accuracy Polishing Heat recycle Coating
    RMS / λ (λ=632.8nm) 0.017 0.018 0.018
    下载: 导出CSV
  • [1] 徐月, 刘超, 兰斌, 等. 自适应光学在星地激光通信中的研究进展[J]. 激光与光电子学进展,2023,60(5):0500004.

    XU Y, LIU CH, LAN B, et al. Research progress of adaptive optics in satellite-to-ground laser communication[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0500004. (in Chinese).
    [2] KAMMERER W, GRENFELL P, HYEST L, et al. CLICK mission flight terminal optomechanical integration and testing[J]. Proceedings of SPIE, 2022, 12777: 1277730.
    [3] 高世杰, 吴佳彬, 刘永凯, 等. 微小卫星激光通信系统发展现状与趋势[J]. 中国光学,2020,13(6):1171-1181. doi: 10.37188/CO.2020-0033

    GAO SH J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181. (in Chinese). doi: 10.37188/CO.2020-0033
    [4] SCHIELER C M, RIESING K M, BILYEU B C, et al. On-orbit demonstration of 200-Gbps laser communication downlink from the TBIRD CubeSat[J]. Proceedings of SPIE, 2023, 12413: 1241302.
    [5] 谢军, 何锋赟, 王晶, 等. 经纬仪主镜轴向支撑结构仿真与优化[J]. 红外与激光工程,2016,45(S1):S118001. doi: 10.3788/IRLA201645s1.118001

    XIE J, HE F Y, WANG J, et al. Simulation and optimization of axial supporting structures for theodolite primary mirror[J]. Infrared and Laser Engineering, 2016, 45(S1): S118001. (in Chinese). doi: 10.3788/IRLA201645s1.118001
    [6] 赵天骄, 乔彦峰, 孙宁, 等. 经纬仪主镜在支撑系统下的面形变化[J]. 中国光学,2017,10(4):477-483. doi: 10.3788/co.20171004.0477

    ZHAO T J, QIAO Y F, SUN N, et al. Surface deformation of theodolite primary mirror under the support system[J]. Chinese Optics, 2017, 10(4): 477-483. (in Chinese). doi: 10.3788/co.20171004.0477
    [7] 张岩, 陈宝刚, 李洪文, 等. 700mm光学望远镜结构设计与分析[J]. 光学技术,2020,46(4):385-390.

    ZHANG Y, CHEN B G, LI H W, et al. Structure design and analysis of 700 mm aperture optical telescope[J]. Optical Technique, 2020, 46(4): 385-390. (in Chinese).
    [8] 李鑫, 袁健, 龚小雪, 等. 外场热环境作用下地基望远镜温度分布预测[J]. 激光与红外,2023,53(4):589-596.

    LI X, YUAN J, GONG X X, et al. Prediction of temperature distribution of ground-based telescopes under the influence of external thermal environment[J]. Laser & Infrared, 2023, 53(4): 589-596. (in Chinese).
    [9] 王洪浩, 王建立, 陈涛, 等. 地基大口径望远镜重力弯曲引起的指向变化检测与修正[J]. 光学 精密工程,2022,30(23):3021-3030. doi: 10.37188/OPE.20223023.3021

    WANG H H, WANG J L, CHEN T, et al. Measurement and calibration of optical axis changes caused by gravity for ground-based large-aperture telescope[J]. Optics Precision Engineering, 2022, 30(23): 3021-3030. (in Chinese). doi: 10.37188/OPE.20223023.3021
    [10] 郭骏立, 安源, 李宗轩, 等. 空间相机反射镜组件的胶结技术[J]. 红外与激光工程,2016,45(3):0313002. doi: 10.3788/irla201645.0313002

    GUO J L, AN Y, LI Z X, et al. Bonding technique of mirror components in space camera[J]. Infrared and Laser Engineering, 2016, 45(3): 0313002. (in Chinese). doi: 10.3788/irla201645.0313002
    [11] 范志刚, 常虹, 陈守谦. 透镜无热装配中粘结层的设计[J]. 光学精密工程,2011,19(11):2573-2581. doi: 10.3788/OPE.20111911.2573

    FAN ZH G, CHANG H, CHEN SH Q. Design of bonding layer in lens athermal mount[J]. Optics Precision Engineering, 2011, 19(11): 2573-2581. (in Chinese). doi: 10.3788/OPE.20111911.2573
    [12] 武永见, 刘涌, 孙欣. 柔性支撑式空间反射镜胶接应力分析与消除[J]. 红外与激光工程,2022,51(4):20210496. doi: 10.3788/IRLA20210496

    WU Y J, LIU Y, SUN X. Analysis and elimination of adhesive bonding force of flexible supported space mirror[J]. Infrared and Laser Engineering, 2022, 51(4): 20210496. (in Chinese). doi: 10.3788/IRLA20210496
    [13] 张家齐, 郭艺博, 张友建, 等. 机载宽温条件下反射镜组件与粘接层设计[J]. 中国光学(中英文),2023,16(3):578-586. doi: 10.37188/CO.2022-0194

    ZHANG J Q, GUO Y B, ZHANG Y J, et al. Design of reflector assembly and adhesive layer under airborne wide temperature conditions[J]. Chinese Optics, 2023, 16(3): 578-586. (in Chinese). doi: 10.37188/CO.2022-0194
    [14] 袁健, 张雷, 姜启福, 等. 1.2 m高轻量化率主反射镜镜坯结构设计[J]. 光电工程,2023,50(4):41-51.

    YUAN J, ZHANG L, JIANG Q F, et al. Structure design of 1.2 m high lightweight primary mirror blank[J]. Opto-Electronic Engineering, 2023, 50(4): 41-51. (in Chinese).
    [15] 袁健, 张雷. 大型离轴三反相机主镜组件结构设计与验证[J]. 红外与激光工程,2023,52(1):20220363. doi: 10.3788/IRLA20220363

    YUAN J, ZHANG L. Structure design and verification of primary mirror assembly for large off-axis TMA camera[J]. Infrared and Laser Engineering, 2023, 52(1): 20220363. (in Chinese). doi: 10.3788/IRLA20220363
    [16] 谭淞年, 王福超, 许永森, 等. 航空光电平台两轴快速反射镜结构设计[J]. 光学 精密工程,2022,30(11):1344-1352. doi: 10.37188/OPE.20213000.0757

    TAN S N, WANG F CH, XU Y S, et al. Structure design of two-axis fast steering mirror for aviation optoelectronic platform[J]. Optics Precision Engineering, 2022, 30(11): 1344-1352. (in Chinese). doi: 10.37188/OPE.20213000.0757
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  82
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 修回日期:  2024-04-09
  • 录用日期:  2024-07-12
  • 网络出版日期:  2024-08-21

目录

    /

    返回文章
    返回