留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

信息熵-低通滤波联合掩模云层干扰去除方法

李静 李颖

李静, 李颖. 信息熵-低通滤波联合掩模云层干扰去除方法[J]. 中国光学(中英文), 2024, 17(5): 1199-1208. doi: 10.37188/CO.2024-0067
引用本文: 李静, 李颖. 信息熵-低通滤波联合掩模云层干扰去除方法[J]. 中国光学(中英文), 2024, 17(5): 1199-1208. doi: 10.37188/CO.2024-0067
LI Jing, LI Ying. Cloud interference removal using information entropy-low-pass-filtering combined mask[J]. Chinese Optics, 2024, 17(5): 1199-1208. doi: 10.37188/CO.2024-0067
Citation: LI Jing, LI Ying. Cloud interference removal using information entropy-low-pass-filtering combined mask[J]. Chinese Optics, 2024, 17(5): 1199-1208. doi: 10.37188/CO.2024-0067

信息熵-低通滤波联合掩模云层干扰去除方法

详细信息
    作者简介:

    李 静(1977—),女,山东荣成人,博士,助理研究员,2008年于海军航空工程大学获得博士学位,现为北京跟踪与通信技术研究所助理研究员,主要从事航天工程总体研究。E-mail:zuobin97117@163.com

    李 颖(1977—),女,河北唐山人,博士,副研究员,主要从事通信与信息系统、电磁兼容、光学系统等方面的研究。E-mail:sunshinegirlly@163.com

  • 中图分类号: TP394.1;TH691.9

Cloud interference removal using information entropy-low-pass-filtering combined mask

More Information
  • 摘要:

    为了降低海洋光学遥感图像中云区对海面表面纹理分析的影响,本文开展了信息熵-低通滤波融合掩模的云层干扰去除研究。首先,分析了现有遥感图像去云算法的基本原理及其局限性。在此基础上,提出一种基于信息熵-低通滤波联合掩模的云层干扰去除方法。其中包括对遥感图像的改进矩匹配的去条带预处理、局部信息熵滤波,以及联合低频滤波作为遥感图像中各像元的校正参数。该算法具有复杂度低、处理速度快的特点。实验结果表明:与现有算法相比,本文提出的算法可在低计算复杂度的前提下,大幅增强各区域的纹理细节信息,其平均信息熵可达到7.8以上,对比度可达到60以上,平均梯度可达到200以上;图像细节方面,本文算法能够在不引入伪边缘、非均匀性的前提下,充分展现受云区影响的海表纹理细节,进一步满足高保真度的遥感应用需求。

     

  • 图 1  两幅原始推扫海洋遥感图像

    Figure 1.  Original push-broom maritine remote sensing images

    图 2  经矩匹配去条带噪声后的图像

    Figure 2.  Images after stripe noise removal by moment matching

    图 3  经改进的矩匹配去条带噪声后的图像

    Figure 3.  Images after stripe noise removal by improved moment matching

    图 4  信息熵滤波图

    Figure 4.  Informational entropy filtering image

    图 5  信息熵值为零的指示图

    Figure 5.  Indicator map for zero local entropy

    图 6  本文算法处理效果

    Figure 6.  Processed by the proposed algorithms

    图 7  原始图像(部分)及各算法处理后图像。从上到下分别是 4 幅不同图像;从左到右分别是原图、基于暗通道先验去雾、局部直方图均衡、低频特征消减、本文算法结果。黄框表示框取示例,其中 ABD 为近云区;CFG 为非 云区;EH 为薄云区

    Figure 7.  Comparison between original images (Part) and corresponding images processed results obtained by four algorithms. From top to bottom are 4 different images, from left to right: original images, and processed by dark channel prior, local histogram equalization, low-frequency diminishing amd proposed algorithm. Yellow Squares are examples of selected areas for evaluations. A,B,D are near cloud areas; C,F,G are non-cloud areas, E,H are thin-cloud areas.

    图 8  局部区域的细节比较

    Figure 8.  Local area details comparison

    表  1  各类算法在局部区域中的信息熵比较

    Table  1.   Comparison of image entropies in local area of images processed by different algorithms

    薄云区 近云区 非云区 平均值
    原图 5.202 3.191 3.391 3.928
    基于暗通道先验算法 6.282 2.835 4.296 4.471
    局部直方图均衡算法 7.350 2.967 5.016 5.111
    低频特征消减算法 4.175 2.976 2.936 3.363
    本文算法 7.847 7.976 7.826 7.883
    下载: 导出CSV

    表  2  各类算法在局部区域中的对比度比较

    Table  2.   Comparison of image contrasts in local area of images processed by different algorithms

    薄云区 近云区 非云区 平均值
    原图 12.088 2.226 2.582 5.632
    基于暗通道先验算法 55.377 8.322 5.479 23.059
    局部直方图均衡算法 55.402 19.079 9.107 27.863
    低频特征消减算法 104.881 66.954 54.744 75.526
    本文算法 60.306 72.438 58.656 63.800
    下载: 导出CSV

    表  3  各类算法在局部区域中的平均梯度比较

    Table  3.   Comparison of image mean gradients in local area of images processed by different algorithms

    薄云区 近云区 非云区 平均值
    原图 6.678 5.970 4.612 5.753
    基于暗通道先验算法 24.486 31.244 10.053 21.928
    局部直方图均衡算法 72.733 76.943 21.358 57.011
    低频特征消减算法 94.857 269.980 189.559 184.799
    本文算法 74.298 315.702 259.858 216.619
    下载: 导出CSV
  • [1] LIU Y F, DENG R R. Ship wakes in optical images[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(8): 1633-1648. doi: 10.1175/JTECH-D-18-0021.1
    [2] XUE F D, JIN W Q, QIU S, et al. Rethinking automatic ship wake detection: state-of-the-art CNN-based wake detection via optical images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5613622.
    [3] DING K Y, YANG J F, LIN H, et al. Towards real-time detection of ships and wakes with lightweight deep learning model in gaofen-3 SAR images[J]. Remote Sensing of Environment, 2023, 284: 113345. doi: 10.1016/j.rse.2022.113345
    [4] WANG D J, LI W M, YAO Y, et al. A fine image motion compensation method for the panoramic TDI CCD camera in remote sensing applications[J]. Optics Communications, 2013, 298-299: 79-82. doi: 10.1016/j.optcom.2013.02.066
    [5] 张元贞, 孙晓兵, 骆冬根. 应用于海洋观测的TDI-CCD驱动电路的设计[J]. 大气与环境光学学报,2019,14(5):385-392.

    ZHANG Y ZH, SUN X B, LUO D G. Design of driving circuit of TDI-CCD for ocean observation[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(5): 385-392. (in Chinese).
    [6] 陶淑苹, 张续严, 冯钦评, 等. 针对广域像移变化的数字时间延迟积分方法[J]. 光学学报,2019,39(9):0911001. doi: 10.3788/AOS201939.0911001

    TAO SH P, ZHANG X Y, FENG Q P, et al. Digital time delay and integration method for wide-range image motion variation[J]. Acta Optica Sinica, 2019, 39(9): 0911001. (in Chinese). doi: 10.3788/AOS201939.0911001
    [7] 宋明珠. 海洋弱小动态目标光学探测技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.

    SONG M Z. Research on optical detection techniques for ocean weak moving targets[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2020. (in Chinese).
    [8] LIU N, LI W, TAO R, et al. Wavelet-domain low-rank/group-sparse destriping for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10310-10321. doi: 10.1109/TGRS.2019.2933555
    [9] TAO L T, YUAN L, SUN J. SkyFinder: attribute-based sky image search[J]. ACM Transactions on Graphics (TOG), 2009, 28(3): 68.
    [10] KANG X D, HUANG Y F, LI SH T, et al. Extended random walker for shadow detection in very high resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 867-876. doi: 10.1109/TGRS.2017.2755773
    [11] FREY R A, ACKERMAN S A, LIU Y H, et al. Cloud detection with MODIS. part I: improvements in the MODIS cloud mask for collection 5[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(7): 1057-1072. doi: 10.1175/2008JTECHA1052.1
    [12] ACKERMAN S A, HOLZ R E, FREY R, et al. Cloud detection with MODIS. part II: validation[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(7): 1073-1086. doi: 10.1175/2007JTECHA1053.1
    [13] IRISH R R, BARKER J L, GOWARD S N, et al. Characterization of the landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(10): 1179-1188.
    [14] HUANG CH Q, THOMAS N, GOWARD S N, et al. Automated masking of cloud and cloud shadow for forest change analysis using Landsat images[J]. International Journal of Remote Sensing, 2010, 31(20): 5449-5464. doi: 10.1080/01431160903369642
    [15] 张舒宁, 张浩, 张兵, 等. 一种适合高光谱卫星云识别的Fmask改进算法[J]. 光学学报,2023,43(24):2428009.

    ZHANG SH N, ZHANG H, ZHANG B, et al. An improved Fmask algorithm for cloud detection applied to hyperspectral satellite[J]. Acta Optica Sinica, 2023, 43(24): 2428009. (in Chinese).
    [16] 姜琪, 代晶晶, 田淑芳. WorldView-3单景影像去云处理对比研究[J]. 测绘科学,2021,46(8):141-147.

    JIANG Q, DAI J J, TIAN SH F. Comparative study on cloud removal of WorldView-3 single scene images[J]. Science of Surveying and Mapping, 2021, 46(8): 141-147. (in Chinese).
    [17] BAI T, LI D R, SUN K M, et al. Cloud detection for high-resolution satellite imagery using machine learning and multi-feature fusion[J]. Remote Sensing, 2016, 8(9): 715. doi: 10.3390/rs8090715
    [18] MOVIA A, BEINAT A, CROSILLA F. Shadow detection and removal in RGB VHR images for land use unsupervised classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119: 485-495. doi: 10.1016/j.isprsjprs.2016.05.004
    [19] TIAN B, AZIMI-SADJADI M R, VONDER HAAR T H, et al. Temporal updating scheme for probabilistic neural network with application to satellite cloud classification[J]. IEEE Transactions on Neural Networks, 2000, 11(4): 903-920. doi: 10.1109/72.857771
    [20] TAN K, ZHANG Y J, TONG X. Cloud extraction from Chinese high resolution satellite imagery by probabilistic latent semantic analysis and object-based machine learning[J]. Remote Sensing, 2016, 8(11): 963. doi: 10.3390/rs8110963
    [21] 逄淑林, 孙林, 杜永明, 等. 全谱段光谱成像仪遥感影像云检测算法[J]. 激光与光电子学进展,2023,60(22):2228003.

    PANG SH L, SUN L, DU Y M, et al. Cloud-detection algorithm for images obtained using the visual and infrared multispectral imager[J]. Laser & Optoelectronics Progress, 2023, 60(22): 2228003. (in Chinese).
    [22] 葛曙乐, 董胜越, 孙根云, 等. 一种适用于高分五号全谱段光谱成像仪影像的云检测算法[J]. 上海航天,2019,36(S2):204-209.

    GE SH L, DONG SH Y, SUN G Y, et al. Cloud detection algorithm for images of visual and infrared multispectral imager[J]. Aerospace Shanghai, 2019, 36(S2): 204-209. (in Chinese).
    [23] 吴代强, 何涛. 基于Landsat8样本数据库的高分五号影像云识别[C]. 第七届高分辨率对地观测学术年会论文集. 高分辨率对地观测学术联盟, 2020: 11.

    WU D Q, HE T. GaoFen-5 image cloud detection based on landsat8 sample database[C]. The 7th China High Resolution Earth Observation Conference. Academic Alliance for High Resolution Earth Observation, 2020: 11. (in Chinese).
    [24] 陶淑苹, 金光, 张贵祥, 等. 实现遥感相机自主辨云的小波SCM算法[J]. 测绘学报,2011,40(5):598-603.

    TAO SH P, JIN G, ZHANG G X, et al. A wavelet SCM algorithm used to detect cloud in remote sensing cameras[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(5): 598-603. (in Chinese).
    [25] 王诗尧. 单幅遥感图像去薄云算法研究[D]. 武汉: 武汉大学, 2017.

    WANG SH Y. Research on thin cloud removal for single aerial images[D]. Wuhan: Wuhan University, 2017. (in Chinese).
    [26] 刘子力, 杨家俊, 王文静, 等. 遥感图像云检测方法综述[J]. 中国空间科学技术,2023,43(1):1-17. doi: 10.11728/cjss2023.01.yg02

    LIU Z L, YANG J J, WANG W J, et al. Cloud detection methods for remote sensing images: a survey[J]. Chinese Space Science and Technology, 2023, 43(1): 1-17. (in Chinese). doi: 10.11728/cjss2023.01.yg02
    [27] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168
    [28] ZHU H, CHAN F H Y, LAM F K. Image contrast enhancement by constrained local histogram equalization[J]. Computer Vision and Image Understanding, 1999, 73(2): 281-290. doi: 10.1006/cviu.1998.0723
    [29] CHENG H D, SHI X J. A simple and effective histogram equalization approach to image enhancement[J]. Digital Signal Processing, 2004, 14(2): 158-170. doi: 10.1016/j.dsp.2003.07.002
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  65
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-10
  • 修回日期:  2024-05-27
  • 网络出版日期:  2024-08-10

目录

    /

    返回文章
    返回