留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高衍射效率偏振无关合束光栅的双层梯形槽形设计与分析

孙澳 王瑞鹏 孙雨琦 王新宇 李文昊 姜岩秀

孙澳, 王瑞鹏, 孙雨琦, 王新宇, 李文昊, 姜岩秀. 高衍射效率偏振无关合束光栅的双层梯形槽形设计与分析[J]. 中国光学(中英文), 2025, 18(1): 53-62. doi: 10.37188/CO.2024-0083
引用本文: 孙澳, 王瑞鹏, 孙雨琦, 王新宇, 李文昊, 姜岩秀. 高衍射效率偏振无关合束光栅的双层梯形槽形设计与分析[J]. 中国光学(中英文), 2025, 18(1): 53-62. doi: 10.37188/CO.2024-0083
SUN Ao, WANG Rui-Peng, SUN Yu-Qi, WANG Xin-Yu, LI Wen-Hao, JIANG Yan-Xiu. Design and analysis of a double-layer trapezoidal groove of polarization-independent beam-combining gratings with high diffraction efficiency[J]. Chinese Optics, 2025, 18(1): 53-62. doi: 10.37188/CO.2024-0083
Citation: SUN Ao, WANG Rui-Peng, SUN Yu-Qi, WANG Xin-Yu, LI Wen-Hao, JIANG Yan-Xiu. Design and analysis of a double-layer trapezoidal groove of polarization-independent beam-combining gratings with high diffraction efficiency[J]. Chinese Optics, 2025, 18(1): 53-62. doi: 10.37188/CO.2024-0083

高衍射效率偏振无关合束光栅的双层梯形槽形设计与分析

cstr: 32171.14.CO.2024-0083
基金项目: 国家重点研发计划(No. 2023YFF0715802);国家自然科学基金青年基金(No. 12105288,No. U21A20509);中国科学院青年创新促进会项目(No. 2022218);吉林省自然科学基金项目(No. 20210101139JC)
详细信息
    作者简介:

    姜岩秀(1987—),女,吉林舒兰人,博士,副研究员, 2015 年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事变栅距全息光栅设计与制作技术研究。E-mail:jiangyanxiup@163.com

  • 中图分类号: TP394.1;TH691.9

Design and analysis of a double-layer trapezoidal groove of polarization-independent beam-combining gratings with high diffraction efficiency

Funds: Supported by National Key R & D Program of China (No. 2023YFF0715802); National Natural Science Foundation of China (No. 12105288, No. U21A20509); Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2022218); Natural Science Foundation of Jilin Province (No. 20210101139JC)
More Information
  • 摘要:

    为了满足强激光系统对于合束光栅的宽带、高衍射效率及偏振无关的需求,本文提出了一种具有双层梯形结构的偏振无关合束光栅。首先,基于严格耦合波理论,建立了一种以粒子群优化算法为核心的偏振无关合束光栅设计模型,通过随机生成特征波长实现效率特性寻优。然后,详细分析了单层梯形和双层梯形结构光栅的槽深、占宽比、侧壁倾角等结构参数对光栅衍射效率及带宽的影响。最后,对两种结构光栅的电场增强特性进行分析讨论。结果表明,双层梯形结构偏振无关合束光栅在51 nm(1038~1089 nm)带宽范围内实现99%以上的理论衍射效率,相比传统单层梯形结构具有更大的工艺容差,容差范围内均满足30 nm带宽和98%的高衍射效率,同时具有更低的光栅近场增强,可以拥有更强的抗激光损伤能力。本文提出的宽带高衍射效率双层梯形结构光栅可以提高激光系统的输出功率,在激光合束领域具有重大的应用价值。

     

  • 图 1  实时衍射效率和评价函数值以及寻优结构参数示意图。(a)寻优时随机波长点的TE、TM以及平均衍射效率;(b)寻优迭代时评价函数值的变化情况;(c) 寻优参数的粒子实时位置

    Figure 1.  Real-time diffraction efficiency, evaluation function values and optimization structure parameters. (a) TE, TM, and average diffraction efficiency at random wavelength points during optimization; (b) the change of evaluation function value during optimization iterations; (c) real-time particle position during optimization

    图 2  单层梯形结构偏振无关合束光栅

    Figure 2.  Polarization-independent combined beam grating with single-layer trapezoidal structure

    图 3  单层梯形光栅在中心波长反射-1级自准直入射时的理论衍射效率

    Figure 3.  Theoretical diffraction efficiency of a single-layer trapezoidal grating at the center wavelength reflected -1 order autocollimation incident

    图 4  槽深及占宽比变化对单层梯形光栅结构TE和TM平均衍射效率的影响

    Figure 4.  Effect of slot depth and duty cycle on the average diffraction efficiency of TE and TM for single-layer trapezoidal grating

    图 5  双层梯形结构偏振无关合束光栅

    Figure 5.  Polarization-independent combined beam grating with double-layer trapezoidal structure

    图 6  双层梯形光栅在中心波长反射-1级自准直入射时的理论衍射效率

    Figure 6.  Theoretical diffraction efficiency of the double-layer trapezoidal grating at center wavelength reflection -1 auto-collimation incident

    图 7  槽深及占宽比变化对双层梯形光栅结构TE和TM平均衍射效率的影响

    Figure 7.  Effect of groove depth and duty cycle on the average diffraction efficiency of TE and TM for double-layer trapezoidal grating

    图 8  侧壁倾角变化对光栅全波段TE和TM偏振平均衍射效率的影响以及不同侧壁倾角下光栅的占宽比和槽深容差。(a)不同侧壁倾角的全波段平均衍射效率,(b) 76°,(c) 78°,(c) 82°的刻蚀深度和占宽比容差

    Figure 8.  The influence of sidewall angle variation on the average diffraction efficiency of TE and TM polarizations across the entire spectral range for gratings, as well as the width-to-period ratio and groove depth tolerances of gratings at different sidewall angles. (a) The average diffraction efficiency across the entire spectral range for different sidewall angles; (b) 76°etch depth and specific width tolerance; (c) 78°etch depth and specific width tolerance; (d) 82°etch depth and specific width tolerance.

    图 9  光栅近场计算模型

    Figure 9.  Near-field calculation model of grating

    图 10  单层梯形结构Ey分量的振幅值。(a) TM;(b) TE

    Figure 10.  Amplitude value of Ey component of grating with single-layer trapezoidal structure. (a) TM;(b) TE

    图 11  双层梯形结构Ey分量的振幅值。(a) TM;(b) TE

    Figure 11.  Amplitude value of Ey component of grating with double-layer trapezoidal structure. (a) TM;(b) TE

  • [1] 游道明, 谭满清, 郭文涛, 等. 光纤光栅外腔激光器光学薄膜的研制[J]. 中国光学(中英文),2023,16(2):447-457. doi: 10.37188/CO.EN.2022-0010

    YOU D M, TAN M Q, GUO W T, et al. Design and fabrication of an optical film for fiber bragg grating external cavity diode lasers[J]. Chinese Optics, 2023, 16(2): 447-457. (in Chinese). doi: 10.37188/CO.EN.2022-0010
    [2] 田思聪, 佟存柱, 王立军, 等. 长春光机所高速垂直腔面发射激光器研究进展[J]. 中国光学(中英文),2022,15(5):946-953. doi: 10.37188/CO.2022-0136

    TIAN S C, TONG C ZH, WANG L J, et al. Research progress of high-speed vertical-cavity surface-emitting laser in CIOMP[J]. Chinese Optics, 2022, 15(5): 946-953. (in Chinese). doi: 10.37188/CO.2022-0136
    [3] 吴玲, 娄岩, 侯欣宜, 等. 2-μm MOPA结构全光纤激光器输出特性研究[J]. 中国光学(中英文),2023,16(2):399-406. doi: 10.37188/CO.2022-0191

    WU L, LOU Y, HOU X Y, et al. Output characteristics of an all-fiber laser with a 2-μm MOPA structure[J]. Chinese Optics, 2023, 16(2): 399-406. (in Chinese). doi: 10.37188/CO.2022-0191
    [4] LIU J Q, ZENG L F, WANG X L, et al. Optimization and demonstration of a bidirectional output linear-cavity fiber laser with a record high power of 2×4 kW[J]. Optics & Laser Technology, 2024, 169: 110031.
    [5] LI S CH, XU J M, LIANG J R, et al. Multi-wavelength random fiber laser with a spectral-flexible characteristic[J]. Photonics Research, 2023, 11(2): 159-164. doi: 10.1364/PRJ.475233
    [6] HUANG B, WANG J Q, SHAO X P. Fiber-based techniques to suppress stimulated brillouin scattering[J]. Photonics, 2023, 10(3): 282. doi: 10.3390/photonics10030282
    [7] CHEN CH W, NGUYEN L V, WISAL K, et al. Mitigating stimulated Brillouin scattering in multimode fibers with focused output via wavefront shaping[J]. Nature Communications, 2023, 14(1): 7343. doi: 10.1038/s41467-023-42806-1
    [8] LIU ZH J, WANG Q, ZHANG W SH, et al. Suppression of stimulated Brillouin scattering by multicolor alternating-polarization bundle light in inertial confinement fusion[J]. Physics of Plasmas, 2023, 30(3): 032703. doi: 10.1063/5.0137403
    [9] DAWSON J W, MESSERLY M J, BEACH R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [10] DONG L, BALLATO J, KOLIS J. Revising power scaling limits of diffraction-limited fiber amplifiers[J]. Proceedings of SPIE, 2024, 12865: 128650H.
    [11] COOK J, SINCORE A, VAIL N, et al. 100 W, tunable in-band thulium fiber amplifier pumped by incoherently combined 1.9 µm fiber lasers[J]. Optics Express, 2023, 31(18): 29245-29254. doi: 10.1364/OE.487601
    [12] GAO Q, LI ZH, ZHAO W, et al. Spectral beam combining of fiber lasers with 32 channels[J]. Optical Fiber Technology, 2023, 78: 103311. doi: 10.1016/j.yofte.2023.103311
    [13] LI J Y, YANG ZH D, WANG Y Y, et al. A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: optical and thermal performance investigations[J]. Renewable Energy, 2023, 206: 609-622. doi: 10.1016/j.renene.2023.02.078
    [14] ZHANG Q S, WU ZH, CAI W, et al. Spectral-combined beam characteristics based on external cavity feedback diode laser array[J]. Optical Engineering, 2023, 62(5): 056101.
    [15] YU X Y, YANG W J, SHEN CH Y, et al. Polarization beam combining by fused silica subwavelength grating[J]. Optics Communications, 2024, 554: 130135. doi: 10.1016/j.optcom.2023.130135
    [16] HONEA E, AFZAL R S, SAVAGE-LEUCHS M, et al. Advances in fiber laser spectral beam combining for power scaling[J]. Proceedings of SPIE, 2016, 9730: 97300Y.
    [17] 马毅, 颜宏, 彭万敬, 等. 基于多路窄线宽光纤激光的9.6 kW共孔径光谱合成光源[J]. 中国激光,2016,43(9):0901009. doi: 10.3788/CJL201643.0901009

    MA Y, YAN H, PENG W J, et al. 9.6 kW Common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Lasers, 2016, 43(9): 0901009. (in Chinese). doi: 10.3788/CJL201643.0901009
    [18] 郑也, 杨依枫, 赵翔, 等. 高功率光纤激光光谱合成技术的研究进展[J]. 中国激光,2017,44(2):0201002. doi: 10.3788/CJL201744.0201002

    ZHENG Y, YANG Y F, ZHAO X, et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201002. (in Chinese). doi: 10.3788/CJL201744.0201002
    [19] 晋云霞, 韩昱行, 曹红超, 等. 近红外强激光与反射式全息平面衍射光栅的交织发展[J]. 中国激光,2024,51(11):1101028.

    JIN Y X, HAN Y X, CAO H CH, et al. Intertwined development of near-infrared high-power lasers and reflective holographic surface-relief diffraction gratings[J]. Chinese Journal of Lasers, 2024, 51(11): 1101028. (in Chinese).
    [20] HU A D, ZHOU CH H, CAO H CH, et al. Polarization-independent wideband mixed metal dielectric reflective gratings[J]. Applied Optics, 2012, 51(20): 4902-4906. doi: 10.1364/AO.51.004902
    [21] 申碧瑶, 曾理江, 李立峰, 等. 多层介质膜偏振无关光栅的研制[J]. 强激光与粒子束,2015,27(11):111013. doi: 10.11884/HPLPB201527.111013

    SHEN B Y, ZENG L J, LI L F, et al. Fabrication of polarization independent gratings made on multilayer dielectric thin film substrates[J]. High Power Laser and Particle Beams, 2015, 27(11): 111013. (in Chinese). doi: 10.11884/HPLPB201527.111013
    [22] CHEN J M, ZHANG Y B, WANG Y L, et al. Polarization-independent broadband beam combining grating with over 98% measured diffraction efficiency from 1023 to 1080 nm[J]. Optics Letters, 2017, 42(19): 4016-4019. doi: 10.1364/OL.42.004016
    [23] CAO H CH, WU J, YU J J, et al. High-efficiency polarization-independent wideband multilayer dielectric reflective bullet-alike cross-section fused-silica beam combining grating[J]. Applied Optics, 2018, 57(4): 900-904. doi: 10.1364/AO.57.000900
    [24] CHO H J, KIM S J, KIM K D, et al. Simply structured polarization-independent high efficiency multilayer dielectric gratings[J]. Applied Optics, 2022, 61(28): 8446-8453. doi: 10.1364/AO.469253
    [25] 朱春霖, 焦庆斌, 谭鑫, 等. 应用于亚波长角向偏振金属光栅设计的快速收敛粒子群算法优化[J]. 光学学报,2019,39(7):0705002. doi: 10.3788/AOS201939.0705002

    ZHU CH L, JIAO Q B, TAN X, et al. Fast convergent particle swarm optimization algorithm for subwavelength azimuthally polarized metal grating design[J]. Acta Optica Sinica, 2019, 39(7): 0705002. (in Chinese). doi: 10.3788/AOS201939.0705002
    [26] FANG J ZH, LIU W B, CHEN L W, et al. A survey of algorithms, applications and trends for particle swarm optimization[J]. International Journal of Network Dynamics and Intelligence, 2023, 2(1): 24-50.
    [27] NAYAK J, SWAPNAREKHA H, NAIK B, et al. 25 Years of particle swarm optimization: flourishing voyage of two decades[J]. Archives of Computational Methods in Engineering, 2023, 30(3): 1663-1725. doi: 10.1007/s11831-022-09849-x
    [28] 唐晋发, 顾培夫, 刘旭, 等. 现代光学薄膜技术[M]. 杭州: 浙江大学出版社, 2006.

    TANG J F, GU P F, LIU X, et al. Modern Optical Thin Film Technology[M]. Hangzhou: Zhejiang University Press, 2006. (in Chinese).
    [29] LI L X, LIU Q, CHEN J M, et al. Polarization-independent broadband dielectric bilayer gratings for spectral beam combining system[J]. Optics Communications, 2017, 385: 97-103. doi: 10.1016/j.optcom.2016.10.048
    [30] MAO X Y, LI CH M, QIU K Q, et al. Design and fabrication of 1300-line/mm polarization-independent reflection gratings for spectral beam combining[J]. Optics Communications, 2020, 458: 124883. doi: 10.1016/j.optcom.2019.124883
    [31] HANG W, LI W H, ZHANG T, et al. A large-size and polarization-independent two dimensional grating fabricated by scanned reactive-ion-beam etching[J]. Nanophotonics, 2022(11): 4649-4657.
    [32] HAN Y X, CAO H CH, KONG F Y, et al. All- and mixed-dielectric grating for Nd: glass-based high-energy pulse compression[J]. High Power Laser Science and Engineering, 2023, 11: e60. doi: 10.1017/hpl.2023.39
    [33] MOHARAM M G, POMMET D A, GRANN E B, et al. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach[J]. Journal of the Optical Society of America A, 1995, 12(5): 1077-1086. doi: 10.1364/JOSAA.12.001077
    [34] LALANNE P, JUREK M P. Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization[J]. Journal of Modern Optics, 1998, 45(7): 1357-1374. doi: 10.1080/09500349808230634
    [35] GAO F H, WANG CH CH, TANG X G, et al. Near field analysis for periodic diffractive gratings using Fourier modal method[J]. Microelectronic Engineering, 2006, 83(4-9): 1062-1066. doi: 10.1016/j.mee.2006.01.044
  • 加载中
图(11)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  136
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 修回日期:  2024-05-24
  • 录用日期:  2024-07-15
  • 网络出版日期:  2024-08-21

目录

    /

    返回文章
    返回