留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于铰链杠杆结构光纤光栅温度压力传感器

刘强 马超 魏淑辉 刘伟 王建鑫 吕靖薇 吕婷婷 刘超

刘强, 马超, 魏淑辉, 刘伟, 王建鑫, 吕靖薇, 吕婷婷, 刘超. 基于铰链杠杆结构光纤光栅温度压力传感器[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0090
引用本文: 刘强, 马超, 魏淑辉, 刘伟, 王建鑫, 吕靖薇, 吕婷婷, 刘超. 基于铰链杠杆结构光纤光栅温度压力传感器[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0090
LIU Qiang, MA Chao, WEI Shu-hui, LIU Wei, WANG Jian-xin, LV Jing-wei, LV Ting-ting, LIU Chao. Fiber Bragg grating temperature and pressure sensor based on hinge lever structure[J]. Chinese Optics. doi: 10.37188/CO.2024-0090
Citation: LIU Qiang, MA Chao, WEI Shu-hui, LIU Wei, WANG Jian-xin, LV Jing-wei, LV Ting-ting, LIU Chao. Fiber Bragg grating temperature and pressure sensor based on hinge lever structure[J]. Chinese Optics. doi: 10.37188/CO.2024-0090

基于铰链杠杆结构光纤光栅温度压力传感器

cstr: 32171.14.CO.2024-0090
基金项目: 黑龙江省省属本科高校“优秀青年教师基础研究支持计划”(No. YQJH2023077);海南省重点研发计划项目(No. ZDYF2022GXJS003)
详细信息
    作者简介:

    刘 强(1980—),男,黑龙江泰来人,博士,教授,2012年于哈尔滨工程大学获得博士学位,主要从事光纤传感技术研究。 E-mail:nepulq@126.com

    刘 超(1978—),男,黑龙江木兰人,博士,教授,博士生导师,2008年于哈尔滨工业大学获得博士学位,主要从事微结构光学器件研究。E-mail:msm-liu@126.com

  • 中图分类号: TN253TH744

Fiber Bragg grating temperature and pressure sensor based on hinge lever structure

Funds: Supported by The Basic Research Support Project for the Excellent Youth Scholars of Heilongjiang Province (No. YQJH2023077); The Science and Technology Special Fund of Hainan Province (No. ZDYF2022GXJS003)
More Information
  • 摘要:

    本文设计了一种高灵敏度温度和压力传感器。该传感结构利用膜片将压力传递给双铰链杠杆结构,采用光纤布拉格光栅(FBG1)作为应变传感器实现压力的测量。此外,双铰链杠杆的引入有效提升了传感器的压力测量灵敏度。仿真和实验测量结果证实,该传感器在0~18 MPa的测量范围内,灵敏度达到453.16 pm/MPa。同时,将另外一支光纤布拉格光栅(FBG2)粘贴在杠杆上,以消除压力测量过程中的温度交叉敏感问题,从而实现温度和压力的同时测量。在25~65 °C测量范围内,温度灵敏度为10.41 pm/ °C。由于光纤传感器的抗电磁干扰特性,该类传感器可用于苛刻环境中的温度和压力测量。

     

  • 图 1  传感结构与力学分析

    Figure 1.  Sensing structure and mechanical analysis

    图 2  (a) Hinge1的宽度、(b) Rod2的宽度、 (c) Rod2的高度及(d) Rod1的宽度对结构影响

    Figure 2.  Influence of (a) the width of Hinge1, (b) the width of Rod2, (c) the height of Rod2, and (d) the width of Rod1 on the structure

    图 3  铰链杠杆结构与膜片应变灵敏度对比

    Figure 3.  Comparison of strain sensitivity between hinge lever structure and diaphragm

    图 4  (a) 传感结构和粘接实物图;(b)压力测试平台

    Figure 4.  (a) Physical drawing of the sensing structure; (b) pressure test platform

    图 5  (a)不同压力下的FBG1反射谱;(b)不同压力下FBG1和FBG2反射谱峰值波长

    Figure 5.  (a) FBG1 reflection spectra under different pressures; (b) peak wavelengths of reflection spectra of FBG1 and FBG2 under different pressures

    图 6  (a) 传感器重复性测试图及(b)温度特性测试结果

    Figure 6.  (a) Repeatability pressure test and (b) temperature test

    表  1  与最近报道的同类传感器性能对比

    Table  1.   Comparison of the designed sensor and those reported recently

    参考文献压力范围压力灵敏度压力分辨率温度范围
    [20]0~16 MPa69.4 pm/MPa288 kPa25 °C~65 °C
    [21]0~10 MPa340 pm/MPa3 kPa5 °C~70 °C
    [22]0~2 MPa258.25 pm/MPaNA20 °C~55 °C
    [23]0~15.5 MPa42.325 pm/MPaNA0 °C~50 °C
    [12]0~30 MPa29.76 pm/MPa30 kPa50 °C~200 °C
    本文0~18 MPa453.16 pm/MPa2.2 kPa25 °C~65 °C
    下载: 导出CSV
  • [1] 徐国权, 熊代余. 光纤光栅传感技术在工程中的应用[J]. 中国光学,2013,6(3):306-317.

    XU G Q, XIONG D Y. Applications of fiber Bragg grating sensing technology in engineering[J]. Chinese Optics, 2013, 6(3): 306-317. (in Chinese).
    [2] SANTOS R G, LOH W, BANNWART A C, et al. An overview of heavy oil properties and its recovery and transportation methods[J]. Brazilian Journal of Chemical Engineering, 2014, 31(3): 571-590. doi: 10.1590/0104-6632.20140313s00001853
    [3] 薛兆康, 国旗, 刘善仁, 等. 油气井下光纤光栅温度压力传感器[J]. 中国光学,2021,14(5):1224-1230. doi: 10.37188/CO.2021-0008

    XUE ZH K, GUO Q, LIU SH R, et al. Fiber Bragg grating temperature and pressure sensor for oil and gas well[J]. Chinese Optics, 2021, 14(5): 1224-1230. (in Chinese). doi: 10.37188/CO.2021-0008
    [4] LIU M Y, CAI Q H, SONG H. Regional strain homogenized diaphragm based FBG high pressure sensor[J]. Sensors and Actuators A: Physical, 2023, 355: 114298. doi: 10.1016/j.sna.2023.114298
    [5] LIANG M F, FANG X Q, NING Y SH. Temperature compensation fiber Bragg grating pressure sensor based on plane diaphragm[J]. Photonic Sensors, 2018, 8(2): 157-167. doi: 10.1007/s13320-018-0417-9
    [6] SONG D C, ZOU J L, WEI ZH X, et al. High-sensitivity fiber Bragg grating pressure sensor using metal bellows[J]. Optical Engineering, 2009, 48(3): 034403. doi: 10.1117/1.3102073
    [7] DA SILVA FALCÃO B, GIWELLI A, NOGUEIRA KIEWIET M, et al. Strain measurement with multiplexed FBG sensor arrays: an experimental investigation[J]. Heliyon, 2023, 9(8): e18652. doi: 10.1016/j.heliyon.2023.e18652
    [8] HEGDE G, PRASAD M V N, ASOKAN S. Temperature compensated diaphragm based Fiber Bragg Grating (FBG) sensor for high pressure measurement for space applications[J]. Microelectronic Engineering, 2021, 248: 111615. doi: 10.1016/j.mee.2021.111615
    [9] LIU X B, LIANG L, JIANG K, et al. Sensitivity-enhanced fiber Bragg grating pressure sensor based on a diaphragm and hinge-lever structure[J]. IEEE Sensors Journal, 2021, 21(7): 9155-9164. doi: 10.1109/JSEN.2020.3045992
    [10] SHU Q M, WU L, LU SH ZH, et al. High-sensitivity structure based on fiber Bragg grating sensor and its application in nonintrusive detection of pipeline pressure change[J]. Measurement, 2022, 189: 110444. doi: 10.1016/j.measurement.2021.110444
    [11] WU L, LU SH ZH, ZHANG H E, et al. An FBG-based high-sensitivity structure and its application in non-intrusive detection of pipeline[J]. Measurement, 2022, 199: 111498. doi: 10.1016/j.measurement.2022.111498
    [12] XU D P, FENG D Q, CHEN Q, et al. Compact-packaged and diaphragm-lever structured fiber-optic temperature and pressure sensors for oil and gas well applications[J]. IEEE Sensors Journal, 2022, 22(23): 22670-22677. doi: 10.1109/JSEN.2022.3215970
    [13] FENG D Q, XU D P, CHEN F Y, et al. An FBG temperature–pressure sensor based on diaphragm and special-shaped bracket structure[J]. IEEE Sensors Journal, 2023, 23(4): 3589-3596. doi: 10.1109/JSEN.2022.3232142
    [14] XU D P, FENG D Q, CHEN Q, et al. Small-sized temperature and pressure sensors based on fiber Bragg grating for oil and gas wells[J]. Sensors and Actuators A: Physical, 2023, 357: 114397. doi: 10.1016/j.sna.2023.114397
    [15] MATVEENKO V P, SHARDAKOV I N, VORONKOV A A, et al. Measurement of strains by optical fiber Bragg grating sensors embedded into polymer composite material[J]. Structural Control and Health Monitoring, 2018, 25(3): e2118. doi: 10.1002/stc.2118
    [16] 刘强, 李斌雯, 孙宇丹, 等. 基于长周期光纤光栅的FBG解调方法[J]. 应用光学,2022,43(1):160-166. doi: 10.5768/JAO202243.0108002

    LIU Q, LI B W, SUN Y D, et al. FBG demodulation method based on long-period fiber gratings[J]. Journal of Applied Optics, 2022, 43(1): 160-166. (in Chinese). doi: 10.5768/JAO202243.0108002
    [17] ZENG L, SUN X Y, HU Y W, et al. High sensitivity micro-displacement sensor based on fiber Bragg grating and amplification substrate[J]. Journal of Central South University, 2022, 29(10): 3361-3367. doi: 10.1007/s11771-022-5161-z
    [18] LIU ZH Y, ZENG L N, XU K, et al. Design of a fiber Bragg grating pressure sensor based on a metal diaphragm and lever structure[J]. Sensors, 2022, 22(14): 5096. doi: 10.3390/s22145096
    [19] 傅海威, 傅君眉, 乔学光, 等. 基于平面膜片温度压强同时测量的光纤光栅传感器[J]. 西安电子科技大学学报(自然科学版),2005,32(1):151-155.

    FU H W, FU J M, QIAO X G, et al. A novel plate diaphragm based in-fiber Bragg grating sensor for simultaneous measurement of temperature and pressure[J]. Journal of Xidian University (Natural Science), 2005, 32(1): 151-155. (in Chinese).
    [20] GU Y F, ZHAO Y, LV R Q, et al. A practical FBG sensor based on a thin-walled cylinder for hydraulic pressure measurement[J]. IEEE Photonics Technology Letters, 2016, 28(22): 2569-2572. doi: 10.1109/LPT.2016.2605696
    [21] LIANG M F, FANG X Q, WU G, et al. A fiber Bragg grating pressure sensor with temperature compensation based on diaphragm-cantilever structure[J]. Optik, 2017, 145: 503-512. doi: 10.1016/j.ijleo.2017.08.014
    [22] ZHAO Y, ZHENG H K, LV R Q, et al. A practical FBG pressure sensor based on diaphragm-cantilever[J]. Sensors and Actuators A: Physical, 2018, 279: 101-106. doi: 10.1016/j.sna.2018.06.004
    [23] LIU M Y, WU Y B, DU CH R, et al. FBG-based liquid pressure sensor for distributed measurement with a single channel in liquid environment[J]. IEEE Sensors Journal, 2020, 20(16): 9155-9161. doi: 10.1109/JSEN.2020.2986550
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  48
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-13
  • 录用日期:  2024-08-05
  • 网络出版日期:  2024-10-16

目录

    /

    返回文章
    返回