留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

腔衰荡光谱仪器腔镜微缺陷散射模型

任颐杰 张正涛

任颐杰, 张正涛. 腔衰荡光谱仪器腔镜微缺陷散射模型[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0094
引用本文: 任颐杰, 张正涛. 腔衰荡光谱仪器腔镜微缺陷散射模型[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0094
REN Yi-jie, ZHANG Zheng-tao. Study of the scattering model of micro-defects on cavity mirrors in cavity ring-down spectroscopy instruments[J]. Chinese Optics. doi: 10.37188/CO.2024-0094
Citation: REN Yi-jie, ZHANG Zheng-tao. Study of the scattering model of micro-defects on cavity mirrors in cavity ring-down spectroscopy instruments[J]. Chinese Optics. doi: 10.37188/CO.2024-0094

腔衰荡光谱仪器腔镜微缺陷散射模型

cstr: 32171.14.CO.2024-0094
基金项目: 新一代人工智能国家科技重大专项(No. 2022ZD0119400)
详细信息
    作者简介:

    任颐杰(1994—),男,山西长治人,博士,助理研究员,2018 年获得长春理工大学学士学位,2023年获得中国科学院长春光学精密机械与物理研究所光学工程博士学位,中国科学院自动化研究所工业视觉与智能装备技术工程实验室助理研究员,主要从事腔衰荡光谱技术、微纳光学、工业视觉技术等方面的研究。E-mail:yijie.ren@ia.ac.cn

    张正涛(1981—),山东烟台人,博士,研究员,博士生导师,2004年获得中国石油大学东营分校学士学位,2007年获得北京理工大学理学硕士学位,2010年获得中国科学院自动化研究所控制科学与工程博士学位。现为中国科学院工业视觉与智能装备技术工程实验室主任。主要研究方向为工业视觉检测、智能机器人等。E-mail :zhengtao.zhang@ia.ac.cn

  • 中图分类号: O433.1

Study of the scattering model of micro-defects on cavity mirrors in cavity ring-down spectroscopy instruments

Funds: Supported by National Science and Technology Major Project (No. 2022ZD0119400)
More Information
  • 摘要:

    腔衰荡光谱仪器(CRDS)中腔镜微缺陷会导致测量精度下降。本文建立了基于Bobbert Vlieger BRDF 理论的腔镜微缺陷散射模型,分析了微缺陷在不同光源波长、入射角度、缺陷量级、缺陷类型、缺陷密度、基底膜层的散射光特性。腔镜微缺陷散射模型研究表明:微米至亚微米(100 μm~0.1 μm)量级缺陷会降低衰荡吸收精度;针对该量级微缺陷的检测,构建了腔镜微缺陷散射和微缺陷暗场检测的分析模型。CRDS腔镜微缺陷散射光模型的建立与分析,是实现腔镜微缺陷高精度检测和CRDS测量精度恢复的关键技术。

     

  • 图 1  CRDS中腔镜缺陷对阈值建立和衰荡吸收的影响

    Figure 1.  The impact of cavity mirror defects on threshold establishment and decay absorption in CRDS

    图 2  明场缺陷检测与暗场缺陷检测原理示意图

    Figure 2.  Schematic diagram of bright field defect detection and dark field defect detection principles

    图 3  腔镜缺陷BRDF散射模型及参数

    Figure 3.  BRDF scattering model and parameters of cavity mirror defects

    图 4  不同入射角度下的散射场空间分布,(a)和(b)为0.1 μmPSL颗粒在75°斜入射和正入射下的空间分布,(c)和(d)为1 μmPSL颗粒在75°斜入射和正入射下的空间分布

    Figure 4.  Spatial distribution of scattering field at different incidence angles (a)(b) Spatial distribution of 0.1 μm PSL particles under 75° oblique incidence and normal incidence (c)(d) Spatial distribution of 1 μm PSL particles under 75° oblique incidence and normal incidence

    图 6  各典型波长由紫外至红外((a)为266 nm、(b)为355 nm、(c)为490 nm、(d)为633 nm、(e)为808 nm、(f)为1064 nm)75°斜入射下散射光的空间分布

    Figure 6.  Spatial distribution of scattered light at various typical wavelengths from UV to IR (a) 266 nm (b) 355 nm (c) 490 nm (d) 633 nm (e) 808 nm (f) 1064 nm

    图 8  不同粒径((a)为 3 μm,(b)为 1 μm、(c)为0.5 μm、(d)为0.1 μm) 75°斜入射下散射光的空间分布

    Figure 8.  Spatial distribution of scattered light for different particle sizes under 75° oblique incidence (a) 3 μm (b) 1 μm (c) 0.5 μm (d) 0.1 μm

    图 9  不同粒径((a)为 3 μm,(b)为 1 μm、(c)为0.5 μm、(d)为0.1 μm) 75°斜入射下散射光的散射平面分布

    Figure 9.  Plane distribution of scattered light for different particle sizes under 75° oblique incidence (a) 3 μm (b) 1 μm(c) 0.5 μm (d) 0.1 μm

    图 11  不同颗粒密度 (a)为10/μm2 (b)为1/μm2 (c)为 0.1/μm2 (d)为0.01/μm2 斜入射时散射光的空间分布为1 μmPSL颗粒在75°斜入射和正入射下的空间分布

    Figure 11.  Spatial distribution of scattered light for different particle densities under oblique incidence (a) 10/μm2 (b) 1/μm² (c) 0.1/μm² (d) 0.01/μm2

    图 13  不同材质颗粒((a)为PSL、(b)为Au、(c)为 Cu)斜入射时散射光的空间分布

    Figure 13.  Spatial distribution of scattered light for different material particles under oblique incidence (a) PSL (b) Au (c) Cu

    图 5  微缺陷在正入射及斜入射时,各散射角的能量分布。蓝色绿色实线为75°斜入射时反射面内不同散射角下半径为3 μm、1 μm 、0.5 μm 、0.1 μm PSL颗粒BRDF,红色虚线为正入射时反射面内不同散射角下3 μm、1 μm 、0.5 μm 、0.1 μm PSL颗粒的BRDF

    Figure 5.  The energy distribution of microdefects at each scattering angle at normal and oblique incidence. The lines show the BRDF of PSL particles with radii of 3 μm, 1 μm, 0.5 μm, and 0.1 μm at different scattering angles within the reflective. Blue and green solid lines are the BRDF under 75° oblique incidence, and red dashed lines are the BRDF under normal incidence.

    图 7  各典型光源波长下75°斜入射时反射面内的BRDF

    Figure 7.  BRDF of the reflective surface at various typical wavelengths under 75° oblique incidence

    图 10  不同粒径大小PSL (3 μm、2 μm、1 μm、0.7 μm、0.5 μm、0.1 μm、0.05 μm) 斜入射时反射面内的BRDF

    Figure 10.  BRDF of the reflective surface for different sizes of PSL particles under oblique incidence (particle sizes: 3 μm, 2 μm, 1 μm, 0.7 μm, 0.5 μm, 0.1 μm, 0.05 μm)

    图 12  不同颗粒密度斜入射时反射面内的BRDF

    Figure 12.  BRDF of the reflective surface for different particle densities under oblique incidence

    图 14  不同材质颗粒斜入射时反射面内的BRDF

    Figure 14.  BRDF of the reflective surface for different material particles under oblique incidence

    图 15  基底不同膜层斜入射时反射面内的BRDF

    Figure 15.  BRDF of the reflective surface for different high-reflective coatings on substrates under oblique incidence

    表  1  线偏振光(P光)正入射时,不同缺陷量级腔镜的散射光强度

    Table  1.   Scattered light intensity of cavity mirrors with different defect orders under normal incidence of linearly polarized light (P polarization)

    Particle
    radius (μm)
    Scattered light
    intensity (ppm)
    s-polarization
    (ppm)
    p-polarization
    (ppm)
    0.01 7.939×10−11 2.3368×10−12 7.9242×10−11
    0.05 1.2351×10−6 1.9405×10−08 1.2087×10−6
    0.1 3.4466×10−5 1.9143×10−6 3.0221×10−5
    0.5 2.9963×10−3 0.0008.1527×10−4 2.3632×10−3
    1 1.5833×10−2 2.6241×10−3 1.4189×10−2
    下载: 导出CSV
  • [1] 任颐杰, 颜昌翔, 徐嘉蔚. 增强吸收光谱技术的研究进展及展望[J]. 中国光学,2023,16(6):1273-1292. doi: 10.37188/CO.2022-0246

    REN Y J, YAN CH X, XU J W. Development and prospects of enhanced absorption spectroscopy[J]. Chinese Optics, 2023, 16(6): 1273-1292. (in Chinese). doi: 10.37188/CO.2022-0246
    [2] ANDERSON D Z. Alignment of resonant optical cavities[J]. Applied Optics, 1984, 23(17): 2944-2949. doi: 10.1364/AO.23.002944
    [3] REN Y J, YAN CH X, WU C J, et al. Resonant frequency separation characteristics of the same-order hermite-gaussian mode in the astigmatic triangular cavity of a cavity ring-down spectroscope[J]. IEEE Access, 2022, 10: 53703-53712. doi: 10.1109/ACCESS.2022.3176452
    [4] SONG SH M, HU CH H, YAN CH X. Optical axis maladjustment sensitivity in a triangular ring resonator[J]. Applied Optics, 2019, 58(1): 29-36. doi: 10.1364/AO.58.000029
    [5] LEHMANN K K, BERDEN G, ENGELN R. An introduction to cavity ring-down spectroscopy[M]//BERDEN G, ENGELN R. Cavity Ring-Down Spectroscopy: Techniques and Applications. Chichester: Wiley, 2009: 1-26.
    [6] HUANG H, LEHMANN K K. Noise caused by a finite extinction ratio of the light modulator in CW cavity ring-down spectroscopy[J]. Applied Physics B, 2009, 94(2): 355-366. doi: 10.1007/s00340-008-3293-y
    [7] MO Z Q, YU J, WANG J D, et al. Differential measurement for cavity ring-down spectroscopy with dynamic allan variance[J]. Journal of Spectroscopy, 2020, 2020(1): 8398063.
    [8] WERLE P. Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence[J]. Applied Physics B, 2011, 102(2): 313-329. doi: 10.1007/s00340-010-4165-9
    [9] 王振, 杜艳君, 丁艳军, 等. 基于傅里叶变换的波长扫描腔衰荡光谱[J]. 物理学报,2019,68(20):204204. doi: 10.7498/aps.68.20191062

    WANG ZH, DU Y J, DING Y J, et al. Wavelength-scanned cavity ring down spectroscopy based on Fourier transform[J]. Acta Physica Sinica, 2019, 68(20): 204204. (in Chinese). doi: 10.7498/aps.68.20191062
    [10] 袁峰, 高晶, 姚路, 等. 球载CRDS高灵敏度甲烷测量系统的研制[J]. 光学 精密工程,2020,28(9):1881-1892. doi: 10.37188/OPE.20202809.1881

    YUAN F, GAO J, YAO L, et al. Development of highly sensitive balloon-borne methane measurement system based on cavity ringdown spectroscopy[J]. Opties and Precision Engineering, 2020, 28(9): 1881-1892. (in Chinese). doi: 10.37188/OPE.20202809.1881
    [11] 张锦龙, 王富美, 方圣欢, 等. 超低损耗激光薄膜的散射与机械损耗[J]. 光学 精密工程,2022,30(21):2655-2677. doi: 10.37188/OPE.20223021.2655

    ZHANG J L, WANG F M, FANG SH H, et al. Scattering and mechanical loss of ultra-low loss laser coatings[J]. Optics and Precision Engineering, 2022, 30(21): 2655-2677. (in Chinese). doi: 10.37188/OPE.20223021.2655
    [12] HUANG H F, KEVIN K K. Noise in cavity ring-down spectroscopy caused by transverse mode coupling[J]. Optics Express, 2007, 15(14): 8745-8759. doi: 10.1364/OE.15.008745
    [13] 侯翔宇, 邱腾. 低维光电材料缺陷与界面增强拉曼散射[J]. 中国光学,2021,14(1):170-181. doi: 10.37188/CO.2020-0145

    HOU X Y, QIU T. Defects- and interface-enhanced Raman scattering in low-dimensional optoelectronic materials[J]. Chinese Optics, 2021, 14(1): 170-181. (in Chinese). doi: 10.37188/CO.2020-0145
    [14] REN Y J, LIU L H, YANG H B, et al. Light scattering defects and measurement accuracy in cavity ring-down spectroscopy[J]. Proceedings of SPIE, 2024, 12997: 129971R.
    [15] 杨甬英, 陆春华, 梁蛟, 等. 光学元件表面缺陷的显微散射暗场成像及数字化评价系统[J]. 光学学报,2007,27(6):1031-1038. doi: 10.3321/j.issn:0253-2239.2007.06.015

    YANG Y Y, LU CH H, LIANG J, et al. Microscopic dark-field scattering imaging and digitalization evaluation system of defects on optical devices precision surface[J]. Acta Optica Sinica, 2007, 27(6): 1031-1038. (in Chinese). doi: 10.3321/j.issn:0253-2239.2007.06.015
    [16] NICODEMUS F E. Directional reflectance and emissivity of an opaque surface[J]. Applied Optics, 1965, 4(7): 767-775. doi: 10.1364/AO.4.000767
    [17] 高萍萍, 陆敏, 王治乐, 等. 表面纳米粒子缺陷的偏振散射特性区分[J]. 中国光学,2020,13(5):975-987. doi: 10.37188/CO.2020-0083

    GAO P P, LU M, WANG ZH L, et al. Differentiation of polarization scattering characteristics of surface nanoparticle defects[J]. Chinese Optics, 2020, 13(5): 975-987. (in Chinese). doi: 10.37188/CO.2020-0083
    [18] 巩蕾, 吴振森. 基片表面微球体纳米级缺陷的光散射分析[J]. 中国激光,2011,38(1):0110001. doi: 10.3788/CJL201138.0110001

    GONG L, WU ZH S. Analysis of light scattering about slightly non-spherical nanoparticles on wafers[J]. Chinese Journal of Lasers, 2011, 38(1): 0110001. (in Chinese). doi: 10.3788/CJL201138.0110001
    [19] BOBBERT P A, VILEGER J. Light scattering by a sphere on a substrate[J]. Physica A: Statistical Mechanics and Its Applications, 1986, 137(1-2): 209-242. doi: 10.1016/0378-4371(86)90072-5
    [20] BOBBERT P A, VILEGER J, GREEF R. Light reflection from a substrate sparsely seeded with spheres - comparison with an ellipsometric experiment[J]. Physica A: Statistical Mechanics and Its Applications, 1986, 137(1-2): 243-257. doi: 10.1016/0378-4371(86)90073-7
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  48
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-11-11

目录

    /

    返回文章
    返回