Design of a medium-wave infrared zoom optical system with low tolerance sensitivity, large zoom ratio, and extremely short total length
-
摘要:
目前中波红外变焦系统在大变倍比,长焦距变焦条件下,难以在极短总长的条件下具备较低敏感度。针对这一问题,本文通过合理分配非球面和衍射面,采用独立组元低敏感度设计方法,设计出一套无需折叠光路,总长仅有337 mm的低敏感度中波红外变焦光学系统。通过降低各个组元的像差从而降低系统公差敏感度。该系统具有30倍大变倍比,可实现30~900 mm的长焦距连续变焦。该系统具有变倍比大、长焦距变焦、极短总长以及低敏感度并且全焦距范围内像质良好等优点,对在狭小空间内进行目标识别、跟踪、探测等方面,具有较大的应用优势。
Abstract:In response to the current problem of difficulty in achieving extremely short total length and low sensitivity in medium wave infrared zoom systems under conditions of large zoom ratio and long focal length, we design a low-sensitivity medium wave infrared zoom optical system with a total length of only 337 mm and no need for folding optical paths, through the rational allocation of aspherical and diffractive surfaces, as well as adopting a low sensitivity design method for independent components. By reducing the aberration of each component, the system tolerance sensitivity is achieved. The system achieves a 30x zoom ratio and continuous zoom with a long focal length of 30-900 mm. The system has advantages such as a large zoom ratio, long focal length zoom, extremely short total length, low sensitivity, and good image quality within the entire focal length range. It has significant application advantages for military applications such as target recognition, tracking, and detection in narrow spaces.
-
表 1 光学设计参数
Table 1. Optical design parameters
Parameter Value Spectral range/μm 3~4.8 Focal length range/mm 30~900 System magnification 30×continuous Subsystem F# 4 Total system length/mm 337 表 2 各组元的焦距
Table 2. Focal length of each component
$ {f}_{1}^{\mathrm{\text{'}}} $/mm $ {f}_{2}^{\mathrm{\text{'}}} $/mm $ {f}_{3}^{\mathrm{\text{'}}} $/mm $ {f}_{4}^{\mathrm{\text{'}}} $/mm 428.6735 − 67.4089 94.3725 − 317.6971 表 3 各组元之间的距离
Table 3. Distance between components
长焦(900 mm) 中焦(550 mm) 短焦(30 mm) $ {d}_{12} $/mm 305.0904 293.8556 13.4818 $ {d}_{23} $/mm 26.9860 53.9271 405.9571 $ {d}_{34} $/mm 98.5523 82.8460 11.1899 -
[1] 张坤, 曲正, 钟兴, 等. 30倍轻小型变焦光学系统设计[J]. 光学 精密工程,2022,30(11):1263-1271. doi: 10.37188/OPE.20223011.1263ZHANG K, QU ZH, ZHONG X, et al. Design of 30× zoom optical system with light weight and compact size[J]. Optics and Precision Engineering, 2022, 30(11): 1263-1271. (in Chinese). doi: 10.37188/OPE.20223011.1263 [2] 姜凯, 周泗忠, 王艳彬, 等. 30×中波红外连续变焦光学系统设计[J]. 红外与激光工程,2012,41(8):2162-2166. doi: 10.3969/j.issn.1007-2276.2012.08.037JIANG K, ZHOU S ZH, WANG Y B, et al. Design of 30× middle infrared continuous zoom system[J]. Infrared and Laser Engineering, 2012, 41(8): 2162-2166. (in Chinese). doi: 10.3969/j.issn.1007-2276.2012.08.037 [3] 顾宪松. 紧凑型大变倍比中波红外连续变焦光学系统设计[J]. 应用光学,2019,40(1):33-38.GU X S. Compact MWIR continuous zoom optical system with large zoom range[J]. Journal of Applied Optics, 2019, 40(1): 33-38. (in Chinese). [4] 陈虹达, 薛常喜. 高变倍比小型化的中波红外光学系统设计[J]. 光学学报,2020,40(2):0222001. doi: 10.3788/AOS202040.0222001CHEN H D, XUE CH X. Design of mid-wave infrared optical system with high variable ratio miniaturization[J]. Acta Optica Sinica, 2020, 40(2): 0222001. (in Chinese). doi: 10.3788/AOS202040.0222001 [5] 张洪博, 闫阿奇, 何双亮, 等. 大变倍比中波红外连续变焦光学系统设计[J]. 光学学报,2023,43(12):1222002. doi: 10.3788/AOS230537ZHANG H B, YAN A Q, HE SH L, et al. Optical system design of MWIR continuous zoom lens with high zoom ratio[J]. Acta Optica Sinica, 2023, 43(12): 1222002. (in Chinese). doi: 10.3788/AOS230537 [6] LIU Y P, YANG B, GU P X, et al. 50x five-group inner-focus zoom lens design with focus tunable lens using Gaussian brackets and lens modules[J]. Optics Express, 2020, 28(20): 29098-29111. doi: 10.1364/OE.404098 [7] 李岩, 张葆, 洪永丰. 大变倍比中波红外变焦系统的小型化设计[J]. 应用光学,2013,34(2):215-219.LI Y, ZHANG B, HONG Y F. Miniaturization design of large zoom ratio MWIR zoom optical system[J]. Journal of Applied Optics, 2013, 34(2): 215-219. (in Chinese). [8] 刘智颖, 高柳絮, 黄蕴涵. Offner型连续变焦中波红外光谱成像系统设计[J]. 红外与激光工程,2019,48(7):0718003. doi: 10.3788/IRLA201948.0718003LIU ZH Y, GAO L X, HUANG Y H. Design of continuous zoom medium-wave infrared spectral imaging system based on Offner scheme[J]. Infrared and Laser Engineering, 2019, 48(7): 0718003. (in Chinese). doi: 10.3788/IRLA201948.0718003 [9] 单秋莎, 谢梅林, 刘朝晖, 等. 制冷型长波红外光学系统设计[J]. 中国光学,2022,15(1):72-78. doi: 10.37188/CO.2021-0116SHAN Q SH, XIE M L, LIU ZH H, et al. Design of cooled long-wavelength infrared imaging optical system[J]. Chinese Optics, 2022, 15(1): 72-78. (in Chinese). doi: 10.37188/CO.2021-0116 [10] KIM H S, KIM C W, HONG S M. Compact mid-wavelength infrared zoom camera with 20: 1 zoom range and automatic athermalization[J]. Optical Engineering, 2002, 41(7): 1661-1667. doi: 10.1117/1.1481048 [11] 唐晗, 夏丽昆, 刘炼, 等. 大变倍比制冷型长波红外变焦光学系统设计[J]. 中国光学(中英文),2024,17(1):69-78. doi: 10.37188/CO.2023-0052TANG H, XIA L K, LIU L, et al. Design of cooled long-wave infrared optical system with large zooming range[J]. Chinese Optics, 2024, 17(1): 69-78. (in Chinese). doi: 10.37188/CO.2023-0052 [12] 闫晶. 高变倍比红外连续变焦光学系统设计研究[D]. 长春: 长春理工大学, 2014.YAN J. Design & research of high ratio IR continuous zoom system[D]. Changchun: Changchun University of Science and Technology, 2014. (in Chinese). [13] 白瑜, 邢廷文, 蒋亚东. 国外红外光谱连续变焦成像系统的研究进展[J]. 光谱学与光谱分析,2014,34(12):3419-3423. doi: 10.3964/j.issn.1000-0593(2014)12-3419-05BAI Y, XING T W, JIANG Y D. Advances in infrared spectrum zoom imaging system research[J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3419-3423. (in Chinese). doi: 10.3964/j.issn.1000-0593(2014)12-3419-05 [14] 张远健, 唐勇, 王鹏, 等. 光学系统设计中降低公差灵敏度的方法[J]. 光电工程,2011,38(10):127-133.ZHANG Y J, TANG Y, WANG P, et al. Method of tolerance sensitivity reduction of optical system design[J]. Opto-Electronic Engineering, 2011, 38(10): 127-133. (in Chinese). [15] 孟超, 郭俊, 付芸. 利用非球面简化红外连续变焦光学系统的研究[J]. 红外,2010,31(4):6-11. doi: 10.3969/j.issn.1672-8785.2010.04.002MENG CH, GUO J, FU Y. Design of far-infrared zoom optical system based on aspheric surface[J]. Infrared, 2010, 31(4): 6-11. (in Chinese). doi: 10.3969/j.issn.1672-8785.2010.04.002