留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变周期光栅法的液晶相控阵指向精度研究

曹宗新 钱奕龙 刘禹彤 李坤 李子凡 龚君豪 胡五生 张大伟 洪瑞金 毛红敏 陆焕钧 樊丽娜 曹召良

曹宗新, 钱奕龙, 刘禹彤, 李坤, 李子凡, 龚君豪, 胡五生, 张大伟, 洪瑞金, 毛红敏, 陆焕钧, 樊丽娜, 曹召良. 基于变周期光栅法的液晶相控阵指向精度研究[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0097
引用本文: 曹宗新, 钱奕龙, 刘禹彤, 李坤, 李子凡, 龚君豪, 胡五生, 张大伟, 洪瑞金, 毛红敏, 陆焕钧, 樊丽娜, 曹召良. 基于变周期光栅法的液晶相控阵指向精度研究[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0097
CAO Zong-xin, QIAN Yi-long, LIU Yu-tong, LI Kun, LI Zi-fan, GONG Jun-hao, HU Wu-sheng, ZHANG Da-wei, HONG Rui-jin, MAO Hong-min, LU Huan-jun, FAN Li-na, CAO Zhao-liang. Research on pointing accuracy of liquid crystal phase array based on the variable period grating method[J]. Chinese Optics. doi: 10.37188/CO.2024-0097
Citation: CAO Zong-xin, QIAN Yi-long, LIU Yu-tong, LI Kun, LI Zi-fan, GONG Jun-hao, HU Wu-sheng, ZHANG Da-wei, HONG Rui-jin, MAO Hong-min, LU Huan-jun, FAN Li-na, CAO Zhao-liang. Research on pointing accuracy of liquid crystal phase array based on the variable period grating method[J]. Chinese Optics. doi: 10.37188/CO.2024-0097

基于变周期光栅法的液晶相控阵指向精度研究

cstr: 32171.14.CO.2024-0097
基金项目: “十四五”江苏省重点学科资助项目(No. 2021135);国家自然科学基金青年科学基金项目(No. 22205155);江苏省自然科学基金青年基金项目(No. BK20220640);江苏省高校基础科学(自然科学)研究面上项目(No. 22KJB150011)
详细信息
    作者简介:

    樊丽娜(1980—),女,山西榆次人,博士,实验师,2020年于上海理工大学获得博士学位,主要从事微纳光学器件方面的研究。E-mail:lnfan@mail.usts.edu.cn

    曹召良(1974—),男,河南济源人,博士,教授,博士生导师,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事液晶自适应光学系统的光学设计、光学实验以及理论分析和模拟工作。E-mail:caozl@usts.edu.cn

  • 中图分类号: O436

Research on pointing accuracy of liquid crystal phase array based on the variable period grating method

Funds: Supported by Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135); the National Natural Science Foundation of China (No. 22205155); the Natural Science Foundation of Jiangsu Province (No. BK20220640); the Natural Science Research of Jiangsu Higher Education Institutions of China (No. 22KJB150011)
More Information
  • 摘要:

    液晶光学相控阵被广泛应用于激光雷达、激光通信以及激光武器,进行激光光束的扫描控制。为了实现液晶相控阵的最优设计和激光光束高精度控制,本文重点研究了工作波长、像素数、像素尺寸及有效灰度数对光束指向精度的影响规律。首先,根据液晶相位调制原理,仿真分析了周期光栅法和变周期光栅法的有效扫描角度和衍射效率;然后,基于驱动电压灰度等分相位调制量,仿真分析了指向误差随工作波长、像素数、像素尺寸以及有效灰度数的变化规律,推导出多变量普适公式;接着,仿真分析了驱动电压灰度非等分相位调制量时的指向精度,并和等分相位调制量的结果进行对比分析;最后,实验验证了有效灰度数、像素数和指向误差的关系,初步证实了经验公式的有效性。本文的研究结果可为液晶相控阵的设计提供理论依据。

     

  • 图 1  相息图工作原理。(a)取模;(b)量化

    Figure 1.  Working principle of kinoform. (a) Modulus; (b) quantization

    图 2  变周期光栅法的相位取模和量化

    Figure 2.  Phase modulation and quantization of VPG

    图 3  周期光栅法和变周期光栅法的衍射效率随衍射角度的变化

    Figure 3.  Diffraction efficiency as a function of diffraction angle for period gratings and variable period gratings

    图 4  NG=32时等分相位调制量和有效电压灰度的关系

    Figure 4.  Uniform phase modulation amount as a function of grey level for NG=32

    图 5  液晶相控阵离散相位产生指向误差

    Figure 5.  The pointing error caused by the discrete phase of the liquid crystal phase array

    图 6  θ=2.06′的量化相位分布:红色实线代表理想分布,蓝色实线代表NG=32时的相位分布

    Figure 6.  Quantitation phase distribution at θ=2.06′. The red and blue lines represent the ideal phase distribution and the phase distribution for NG=32, respectively

    图 7  相位等分的指向误差随偏转角度的变化关系

    Figure 7.  Relationship between the pointing error of uniform phase and the rotation angle

    图 8  指向误差随波长的变化情况:PS=17 μm,PN=1024NG =32

    Figure 8.  Pointing error as a function of wavelength at the condition of PS=17 μm, PN=1024 and NG =32

    图 9  指向误差随有效灰度数的变化情况。λ=1.064 μm,PS=17 μm,PN=1024

    Figure 9.  Pointing error as a function of effective grey levels at the condition of λ=1.064 μm, PS=17 μm and PN=1024

    图 10  指向误差随像素尺寸的变化情况。λ=1.064 μm,NG=32,PN=1024

    Figure 10.  Pointing error as a function of pixel size at the condition of λ=1.064 μm, NG=32 and PN=1024

    图 11  指向误差随像素数的变化:λ=1.064 μm,NG=32,PS=17 μm

    Figure 11.  Pointing error as a function of pixel number at the condition of λ=1.064 μm, NG=32 and PS=17 μm

    图 12  10组数据的仿真和计算结果。左侧纵坐标表示仿真值和计算值,右侧纵坐标表示二者的偏移量

    Figure 12.  Simulation and calculation results for 10 sets of data. The left ordinate represents the pointing errors of simulation and computation and the right ordinate represents the deviation

    图 13  非等分相位调制量和有效灰度数的关系

    Figure 13.  Nonuniform phase modulation as a function of effective grey levels

    图 14  θ=0.41′时的等分和非等分量化相位分布

    Figure 14.  Uniform and nonuniform quantitation phase distribution at θ=0.41′

    图 15  非等分相位的指向误差随偏转角度的变化

    Figure 15.  Pointing error of nonuniform phase as a function of rotation angle

    图 16  不同偏转角度下等分相位和非等分相位的指向误差的差值

    Figure 16.  Difference of pointing errors between uniform and nonuniform phase at different rotation angles

    图 17  θ=−0.02′处等分相位和非等分相位的量化相位分布

    Figure 17.  Quantitation phase distributions for uniform and nonuniform phase at θ=−0.02′

    图 18  验证实验光路

    Figure 18.  Experimental optical layout

    图 19  采集的光斑图像。(a)没有施加电压; (b) NG=32; (c) NG=64; (d) NG=128;(e) NG=256

    Figure 19.  Acquired optical spot images. (a) Without the driving voltage; (b) NG=32; (c) NG=64; (d) NG=128; (e) NG=256

    图 20  实验测量的水平偏转50次光斑质心

    Figure 20.  Experimental measurement results of the centroid of the light spot with 50 horizontal deflections

    图 21  指向误差随有效灰度数的变化情况

    Figure 21.  Pointing error as a function of effective grey levels

    图 22  像素数分别为 (a) 1024, (b) 702, (c) 512, (d) 320, (e) 200时采集的光斑图像

    Figure 22.  Acquired optical spot images when the pixel number are (a) 1024, (b) 702, (c) 512, (d) 320 and (e) 200

    图 23  指向误差随像素数的变化

    Figure 23.  Pointing error as a function of pixel number

    表  1  随机选取的液晶相控阵多变量数据

    Table  1.   Random selection data for the multivariable of liquid crystal phase array

    组别 PS/μm PN NG λ/μm
    1 10.0 1000 50 1.000
    2 5.0 800 40 0.800
    3 8.0 900 60 0.500
    4 12.0 512 80 0.635
    5 15.0 700 32 0.444
    6 9.2 600 64 0.900
    7 16.0 888 76 0.456
    8 14.0 666 86 0.707
    9 18.0 500 90 1.180
    10 9.0 1200 100 1.300
    下载: 导出CSV
  • [1] 王琦, 高旭峰, 张大伟, 等. 液晶光学相控阵技术的研究进展[J]. 激光与光电子学进展,2021,58(17):1700007.

    WANG Q, GAO X F, ZHANG D W, et al. Research progress in liquid crystal optical phased array technology[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1700007. (in Chinese).
    [2] HE X X, LI M F, LIANG ZH Q, et al. A liquid crystal stackable phased array to achieve fast and precise nonmechanical laser beam deflection[J]. Optics Communications, 2022, 506: 127598. doi: 10.1016/j.optcom.2021.127598
    [3] WANG CH M, WANG Q D, MU Q Q, et al. High-precision beam array scanning system based on liquid crystal optical phased array and its zero-order leakage elimination[J]. Optics Communications, 2022, 506: 127610. doi: 10.1016/j.optcom.2021.127610
    [4] WANG Z SH, WANG CH Y, LIANG SH N, et al. Diffraction characteristics of a non-mechanical beam steering system with liquid crystal polarization gratings[J]. Optics Express, 2022, 30(5): 7319-7331. doi: 10.1364/OE.452397
    [5] STOCKLEY J, SERATI S. Advances in liquid crystal beam steering[J]. Proceedings of SPIE, 2004, 5550: 32-39. doi: 10.1117/12.562595
    [6] WANG X R, WU L, LI M, et al. Theoretical and experimental demonstration on grating lobes of liquid crystal optical phased array[J]. International Journal of Optics, 2016, 2016: 7175809.
    [7] WU L, WANG X R, XIONG C D, et al. Improved high order grating method to realize wide angle beam steering on liquid crystal optical phased array[J]. Proceedings of SPIE, 2015, 9795: 161-169.
    [8] MCMANAMON P F, DORSCHNER T A, CORKUM D L, et al. Optical phased array technology[J]. Proceedings of the IEEE, 1996, 84(2): 268-298. doi: 10.1109/5.482231
    [9] LINNENBERGER A, SERATI S, STOCKLEY J. Advances in optical phased array technology[J]. Proceedings of SPIE, 2006, 6304: 199-207.
    [10] WINKER B, MAHAJAN M, HUNWARDSEN M. Liquid crystal beam directors for airborne free-space optical communications[C]. SPIE, 2004: 1702-1708.
    [11] LIN Y H, MAHAJAN M, TABER D, et al. Compact 4 cm aperture transmissive liquid crystal optical phased array for free-space optical communications[J]. Proceedings of SPIE, 2005, 5892: 107-116.
    [12] 孔令讲, 朱颖, 宋艳, 等. 基于非周期闪耀光栅的液晶相控阵波控方法研究[J]. 光学学报,2011,31(1):0123001. doi: 10.3788/AOS201131.0123001

    KONG L J, ZHU Y, SONG Y, et al. A beam steering approach of liquid crystal phased array based on nonperiodic blazed grating[J]. Acta Optica Sinica, 2011, 31(1): 0123001. (in Chinese). doi: 10.3788/AOS201131.0123001
    [13] LIANG ZH Q, HUANG Y W, HE X X, et al. Four-access, 80 mm aperture all phase-controlled liquid crystal laser antenna[J]. Optical Engineering, 2022, 61(10): 105113.
    [14] TANG ZH H, WANG X R, HUANG Z Q, et al. Sub-aperture coherence method to realize ultra-high resolution laser beam deflection[J]. Optics Communications, 2015, 335: 1-6. doi: 10.1016/j.optcom.2014.08.006
    [15] HU L F, XUAN L, LIU Y J, et al. Phase-only liquid-crystal spatial light modulator for wave-front correction with high precision[J]. Optics Express, 2004, 12(26): 6403-6409. doi: 10.1364/OPEX.12.006403
    [16] PENG Z H, LIU Y G, YAO L SH, et al. Improvement of the switching frequency of a liquid-crystal spatial light modulator with optimal cell gap[J]. Optics Letters, 2011, 36(18): 3608-3610. doi: 10.1364/OL.36.003608
    [17] WANG C, PENG Z, LIU Y, et al. Radial sub-aperture coherence method used to achieve beam steering with high precision and stability[J]. Optics Express, 2019, 27(5): 6331-6347. doi: 10.1364/OE.27.006331
    [18] 刘伯晗, 张健. 纯相位空间光调制器动态控制光束偏转[J]. 中国激光,2006,33(7):899-902.

    LIU B H, ZHANG J. Dynamical laser beams steering with phase-only spatial light modulator[J]. Chinese Journal of Lasers, 2006, 33(7): 899-902. (in Chinese).
    [19] 徐林. 液晶光学相控阵相位延迟及衍射效率研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    XU L. Research on phase delay and diffraction efficiency of liquid crystal optical phased array[D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese).
    [20] 张健, 徐林, 吴丽莹, 等. 液晶光学相控阵可编程光束偏转研究[J]. 光子学报,2008,37(8):1497-1502.

    ZHANG J, XU L, WU L Y, et al. Programmable beam steering based on liquid crystal optical phased array[J]. Acta Photonica Sinica, 2008, 37(8): 1497-1502. (in Chinese).
    [21] 杜升平, 傅承毓, 黄永梅, 等. 一种液晶相位调制特性的测量方法[J]. 光子学报,2017,46(1):0105001. doi: 10.3788/gzxb20174601.0105001

    DU SH P, FU CH Y, HUANG Y M, et al. A method of measure the liquid-crystal's modulating characteristic[J]. Acta Photonica Sinica, 2017, 46(1): 0105001. (in Chinese). doi: 10.3788/gzxb20174601.0105001
    [22] 杜升平, 黄永梅, 付承毓, 等. 基于相控阵雷达模型的液晶光束偏转波控方法研究[J]. 应用光学,2017,38(4):581-586.

    DU SH P, HUANG Y M, FU CH Y, et al. Liquid-crystal beam deflection wave control method based on phased array radar[J]. Journal of Applied Optics, 2017, 38(4): 581-586. (in Chinese).
    [23] 肖文奔, 黄永梅, 吴琼雁, 等. 基于Wollaston棱镜的大角度液晶光束偏转系统[J]. 光学技术,2012,38(5):588-592.

    XIAO W B, HUANG Y M, WU Q Y, et al. A wide-angle beam steering system based on Wollaston prisms[J]. Optical Technique, 2012, 38(5): 588-592. (in Chinese).
    [24] 范佳鑫, 王春阳, 张宁. 液晶相控阵指向精度影响因素分析及优化方法[J]. 长春理工大学学报(自然科学版),2022,45(2):65-73.

    FAN J X, WANG CH Y, ZHANG N. Analysis of factors affecting the steering accuracy of liquid crystal phased array and optimization method[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2022, 45(2): 65-73. (in Chinese).
    [25] 黄志伟, 王春阳, 彭丽华, 等. 基于蝙蝠算法的液晶光学相控阵波束优化[J]. 激光与光电子学进展,2018,55(8):082303.

    HUANG ZH W, WANG CH Y, PENG L H, et al. Beam optimization of liquid crystal optical phased array based on bat algorithm[J]. Laser & Optoelectronics Progress, 2018, 55(8): 082303. (in Chinese).
    [26] 王春阳, 李兰婷, 史红伟, 等. 基于液晶相控阵的光束偏转控制方法研究[J]. 液晶与显示,2018,33(10):857-863. doi: 10.3788/YJYXS20183310.0857

    WANG CH Y, LI L T, SHI H W, et al. Beam deflection control method based on liquid crystal phased array[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(10): 857-863. (in Chinese). doi: 10.3788/YJYXS20183310.0857
    [27] BUCK J, SERATI S, HOSTING L, et al. Polarization gratings for non-mechanical beam steering applications[J]. Proceedings of SPIE, 2012, 8395: 159-164.
    [28] MCMANAMON P F. Agile nonmechanical beam steering[J]. Optics and Photonics News, 2006, 17(3): 24-29. doi: 10.1364/OPN.17.3.000024
    [29] MCMANAMON P F, BOS P J, ESCUTI M J, et al. A review of phased array steering for narrow-band electrooptical systems[J]. Proceedings of the IEEE, 2009, 97(6): 1078-1096. doi: 10.1109/JPROC.2009.2017218
    [30] 丁科, 亓波. 基于二维标量衍射的液晶光束偏转性能仿真[J]. 中国激光,2016,43(2):0205005. doi: 10.3788/CJL201643.0205005

    DING K, QI B. Beam steering performance simulation of liquid crystal spatial light modulator based on 2D scalar diffraction[J]. Chinese Journal of Lasers, 2016, 43(2): 0205005. (in Chinese). doi: 10.3788/CJL201643.0205005
    [31] 郭弘扬, 杜升平. 驱动电压对向列型液晶调制相位的影响[J]. 国外电子测量技术,2017,36(12):28-31.

    GUO H Y, DU SH P. Influence of driving voltage on phase modulation of nematic liquid crystal[J]. Foreign Electronic Measurement Technology, 2017, 36(12): 28-31. (in Chinese).
    [32] 汪相如, 黄子强. 液晶光学相控阵组件扫描精度分析研究[J]. 光电技术应用,2017,32(4):33-37.

    WANG X R, HUANG Z Q. Analysis and research on liquid crystal optical phase array component steering presicion[J]. Electro-Optic Technology Application, 2017, 32(4): 33-37. (in Chinese).
    [33] 王承邈. 基于液晶光学相控阵的高精度光束指向控制技术[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.

    WANG CH M. High precision beam pointing control technology based on liquid crystal optical phased array[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2021. (in Chinese).
    [34] 曹召良, 穆全全, 胡立发, 等. 液晶波前校正器位相调制非线性及闭环校正研究[J]. 液晶与显示,2008,23(2):157-162.

    CAO ZH L, MU Q Q, HU L F, et al. Nonlinear phase modulation of liquid crystal wavefront corrector and closed loop correction[J]. Chinese Journal of Liquid Crystals and Displays, 2008, 23(2): 157-162. (in Chinese).
    [35] 刘禹彤, 曹宗新, 李子凡, 等. 基于液晶偏振光栅的大口径激光光束扫描系统[J]. 应用光学,2024,45(3):557-567. doi: 10.5768/JAO202445.0310010

    LIU Y T, CAO Z X, LI Z F, et al. Large-aperture laser beam scanning system based on liquid crystal polarization grating[J]. Journal of Applied Optics, 2024, 45(3): 557-567. (in Chinese). doi: 10.5768/JAO202445.0310010
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  84
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-27
  • 修回日期:  2024-06-21
  • 录用日期:  2024-07-25
  • 网络出版日期:  2024-08-21

目录

    /

    返回文章
    返回