留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气折射的影响与修正技术研究进展

李洋 靖旭 秦来安 程乙轮 王港雨 侯再红

李洋, 靖旭, 秦来安, 程乙轮, 王港雨, 侯再红. 大气折射的影响与修正技术研究进展[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0101
引用本文: 李洋, 靖旭, 秦来安, 程乙轮, 王港雨, 侯再红. 大气折射的影响与修正技术研究进展[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0101
LI Yang, JING Xu, QIN Lai-an, CHENG Yi-lun, WANG Gang-yu, HOU Zai-hong. Research progress on the effects of atmospheric refraction and correction techniques[J]. Chinese Optics. doi: 10.37188/CO.2024-0101
Citation: LI Yang, JING Xu, QIN Lai-an, CHENG Yi-lun, WANG Gang-yu, HOU Zai-hong. Research progress on the effects of atmospheric refraction and correction techniques[J]. Chinese Optics. doi: 10.37188/CO.2024-0101

大气折射的影响与修正技术研究进展

cstr: 32171.14.CO.2024-0101
基金项目: 国家高技术项目(No. E33D0HD85S2)
详细信息
    作者简介:

    侯再红(1968—),男,山西河津人,博士生导师,研究员,1990年于华中理工大学获得学士学位,主要从事大气参数测量以及仪器设计方面的研究。E-mail:zhhou@aiofm.ac.cn

  • 中图分类号: TP394.1;TH691.9

Research progress on the effects of atmospheric refraction and correction techniques

Funds: Supported by Project of the National High Technology of China (No. E33D0HD85S2).
More Information
  • 摘要:

    为了深入了解大气折射的相关进展,本文从其影响、公式发展以及修正原理等方面进行了介绍。针对大气折射的影响,本文根据研究领域涉及的波段不同,将其划分为应用于光学成像、激光传输和光电跟踪等领域的可见光到红外波段,以及应用于雷达测量和卫星探测等领域的无线电波段。这两个波段在实际处理过程中选取的计算公式是不同的。根据折射率公式的发展历史对折射率公式进行介绍,并指出了各公式的局限性。目前对于前者波段公式的最佳选择是Rüeger学者所总结的公式,而对于后者建议选择ITU-R P.453-13建议书中的无线电折射率公式。最后介绍了获取大气折射率的传统计算方法和光学测量方法。传统计算方法是基于大气模式或气象数据建立的模型,通过公式计算或模型拟合来确定特定区域的折射率。这种方法在单一环境或平均范围内具有一定的准确性。而光学测量方法不需要大气模型作为基础,更不用依赖气象参数,测量结果数据实时性高、更具路径代表性,能弥补一些传统方式的弊端,更符合未来的发展趋势。

     

  • 图 1  大气层示意图

    Figure 1.  Schematic diagram of the atmosphere

    图 2  球面分层大气中的光线追迹(经授权转载自 [文献44] © 美国光学学会)[44]

    Figure 2.  Ray tracing in the spherically layered atmosphere (Reprinted with permission from [ref. 44] © Optical Society of America) [44]

    图 3  双信标光学测量系统

    Figure 3.  Dual beacon light source measurement system

    图 4  测量装置的主要组成部分(经授权转载自文献[44] © 美国光学学会)[44]

    Figure 4.  Main components of the measuring device (Reprinted with permission from ref. [44] © Optical Society of America) [44]

    图 5  成像光斑位置示意图(经授权转载自文献 [44] © 美国光学学会)[44]

    Figure 5.  Schematic diagram of imaging spot position (Reprinted with permission from ref. [44] © Optical Society of America) [44]

    图 6  光学观测与传统计算结果比较。(经授权转载自文献 [44] © 美国光学学会)[44]

    Figure 6.  Comparison of results from optical observations and conventional calculations. (Reprinted with permission from ref. [44] © Optical Society of America) [44]

    图 7  彩色相机通道差分光学测量系统

    Figure 7.  Channel differential optical measurement system of the color camera

    图 8  彩色相机的量子效率以及激光器波长

    Figure 8.  Color cameras’ quantum efficiencies and the lasers’ wavelength

    表  1  3种光学测量方法效果对比

    Table  1.   Comparison of three optical measurement methods

    双信标光学
    测量方法
    三孔光学
    观测方法
    彩色相机通道差分
    光学测量方法
    相同点理论基础:到达角起伏与波长无关;
    测量对象:蒙气色差;
    测量结果:实时性高、更具路径代表性、无需依赖大气数据。
    不同点测量方式
    主动式被动式主动式/被动式
    接收传感器
    灰度传感器灰度传感器彩色传感器
    应用场景
    近地面水平或
    斜程蒙气色差
    整层蒙气色差近地面水平、斜程
    或整层蒙气色差
    应用情况
    方法提出待验证已应用于观测方法提出待验证
    下载: 导出CSV
  • [1] WANG ZH, JIANG J. Refraction surface-based stellar atmospheric refraction correction and error estimation for terrestrial star tracker[J]. IEEE Sensors Journal, 2022, 22(10): 9685-9696. doi: 10.1109/JSEN.2022.3164661
    [2] WANG Y L, ZHU Y, WANG M, et al. Atmospheric refraction calibration of geometric positioning for optical remote sensing satellite[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(12): 2130-2134. doi: 10.1109/LGRS.2019.2963626
    [3] HAN W, HAN SH D. Research on the influence of atmospheric vertical refraction on trigonometric leveling survey in qinling mountains[J]. IOP Conference Series: Earth and Environmental Science, 2021, 826(1): 012039. doi: 10.1088/1755-1315/826/1/012039
    [4] LOVCHY I L. Calculation of refraction angles for various spherically layered atmospheric models[J]. Journal of Optical Technology, 2021, 88(2): 60-65. doi: 10.1364/JOT.88.000060
    [5] ZHAO F M, DAI C M, WU P F, et al. Effect of atmospheric refraction on limb detecting[J]. Proceedings of SPIE, 2019, 11455: 114556B.
    [6] STONE R C. An accurate method for computing atmospheric refraction[J]. Publications of the Astronomical Society of the Pacific, 1996, 108(729): 1051-1058.
    [7] GUBLER J, TYTLER D. Differential atmospheric refraction and limitations on the relative astrometric accuracy of large telescopes[J]. Publications of the Astronomical Society of the Pacific, 1998, 110(748): 738-746. doi: 10.1086/316172
    [8] JIANG D G, ZHANG P, DENG K, et al. The atmospheric refraction and beam wander influence on the acquisition of LEO-Ground optical communication link[J]. Optik, 2014, 125(15): 3986-3990. doi: 10.1016/j.ijleo.2014.01.146
    [9] 张捍卫, 雷伟伟, 丁安民. 低高度角处的蒙气差级数展开式[J]. 天文学报,2013,54(6):562-568. doi: 10.3969/j.issn.0001-5245.2013.06.006

    ZHANG H W, LEI W W, DING A M. The series expansion of astronomical atmospheric refraction for low vertical angle[J]. Acta Astronomica Sinica, 2013, 54(6): 562-568. (in Chinese). doi: 10.3969/j.issn.0001-5245.2013.06.006
    [10] 王成良, 胡胜敏, 饶鹏. 静止轨道卫星红外探测大气透过率与蒙气差分析[J]. 光学与光电技术,2013,11(4):33-36.

    WANG CH L, HU SH M, RAO P. Analysis of atmospheric transmittance and refraction on geostationary satellite-based infrared detection[J]. Optics & Optoelectronic Technology, 2013, 11(4): 33-36. (in Chinese).
    [11] CORBARD T, IKHLEF R, MORAND F, et al. On the importance of astronomical refraction for modern solar astrometric measurements[J]. Monthly Notices of the Royal Astronomical Society, 2019, 483(3): 3865-3877. doi: 10.1093/mnras/sty3391
    [12] 王冠, 王惠林, 骞琨, 等. 机载光电系统目标定位大气折射修正研究[J]. 应用光学,2022,43(4):641-647. doi: 10.5768/JAO202243.0401008

    WANG G, WANG H L, QIAN K, et al. Research on atmospheric refraction correction of airborne electro-optical system target location[J]. Journal of Applied Optics, 2022, 43(4): 641-647. (in Chinese). doi: 10.5768/JAO202243.0401008
    [13] ABDULLAH-AL-MAMUN M, VOELZ D. Effects of temperature inversion in the lower atmosphere on dispersion and angle of arrival of highly directional beams[J]. Optical Engineering, 2020, 59(8): 081802.
    [14] VAN DEN BORN J A, JELLEMA W. Quantification of the expected residual dispersion of the MICADO Near-IR imaging instrument[J]. Monthly Notices of the Royal Astronomical Society, 2020, 496(4): 4266-4275. doi: 10.1093/mnras/staa1870
    [15] 杨晓东, 姜璐. 基于天体红外测量的蒙气差计算方法[J]. 红外与激光工程,2002,31(2):121-124. doi: 10.3969/j.issn.1007-2276.2002.02.007

    YANG X D, JIANG L. Calculation of the refraction based on the measurement of infrared ray from celestial body[J]. Infrared and Laser Engineering, 2002, 31(2): 121-124. (in Chinese). doi: 10.3969/j.issn.1007-2276.2002.02.007
    [16] 谭碧涛, 景春元, 朱启海, 等. 低仰角蒙气差精密修正的新方法[J]. 应用光学,2006,27(6):563-566. doi: 10.3969/j.issn.1002-2082.2006.06.021

    TAN B T, JING CH Y, ZHU Q H, et al. New method of precise correction for atmosphere refraction in low elevation[J]. Journal of Applied Optics, 2006, 27(6): 563-566. (in Chinese). doi: 10.3969/j.issn.1002-2082.2006.06.021
    [17] 门涛, 史金霞, 徐蓉, 等. 基于低仰角红外测量的蒙气差修正方法[J]. 红外与激光工程,2016,45(1):0117004. doi: 10.3788/m0001820164501.117004

    MEN T, SHI J X, XU R, et al. Correction method of atmospheric refraction based on the low elevation infrared measurement[J]. Infrared and Laser Engineering, 2016, 45(1): 0117004. (in Chinese). doi: 10.3788/m0001820164501.117004
    [18] 程煜, 王雪莹, 盛卫东, 等. 一种基于恒星光线偏折的大气折射率估计方法[J]. 光学学报,2019,39(7):0701001. doi: 10.3788/AOS201939.0701001

    CHENG Y, WANG X Y, SHENG W D, et al. Atmospheric refractivity estimation method based on stellar light deflection[J]. Acta Optica Sinica, 2019, 39(7): 0701001. (in Chinese). doi: 10.3788/AOS201939.0701001
    [19] 韩燕, 强希文, 冯建伟, 等. 大气折射率高度分布模式及其应用[J]. 红外与激光工程,2009,38(2):267-271.

    HAN Y, QIANG X W, FENG J W, et al. Height distribution profiles and its application of atmosphere refractive index[J]. Infrared and Laser Engineering, 2009, 38(2): 267-271. (in Chinese).
    [20] 王亚伟, 周维虎, 王中宇, 等. 激光跟踪测量系统大气折射率修正方法[J]. 光电子技术,2011,31(2):83-86,97.

    WANG Y W, ZHOU W H, WANG ZH Y, et al. Correction method of air refractivity for laser tracking measurement system[J]. Optoelectronic Technology, 2011, 31(2): 83-86,97. (in Chinese).
    [21] 吕炜煜, 苑克娥, 胡顺星, 等. 干旱地区大气折射对光电工程的影响[J]. 红外与激光工程,2015,44(1):291-297.

    LV W Y, YUAN K E, HU SH X, et al. Effection of atmospheric refraction on opto-electronic engineering in arid area[J]. Infrared and Laser Engineering, 2015, 44(1): 291-297. (in Chinese).
    [22] YE J, HE H Q, ZHANG L, et al. An accurate calculation of the atmospheric refraction error of optical remote sensing images based on the fine-layered light vector method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1514-1525. doi: 10.1109/JSTARS.2022.3143883
    [23] 杨玉峰, 宋宁宁, 韩香. 基于NCEP数据库的星光大气折射修正模型[J]. 光学学报,2023,43(18):1801002. doi: 10.3788/AOS230452

    YANG Y F, SONG N N, HAN X. Corrected starlight atmospheric refraction model based on NCEP database[J]. Acta Optica Sinica, 2023, 43(18): 1801002. (in Chinese). doi: 10.3788/AOS230452
    [24] 习锋杰, 杨轶, 靖旭, 等. 水平蒙气色差对光轴定标的影响[J]. 量子电子学报,2020,37(4):386-391.

    XI F J, YANG Y, JING X, et al. Dispersion influence of horizontal atmospheric refraction on calibration of optical axis[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 386-391. (in Chinese).
    [25] 刘玉丽, 王钰茹, 谢晨波. 转动拉曼激光雷达用于大气折射修正的研究[J]. 大气与环境光学学报,2023,18(5):426-433.

    LIU Y L, WANG Y R, XIE CH B. Investigation of atmospheric refractive modification based on rotational Raman lidar[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(5): 426-433. (in Chinese).
    [26] 张瑜, 甘利萍. 大气折射误差修正研究现状与展望[J]. 河南师范大学学报(自然科学版),2016,44(4):45-52.

    ZHANG Y, GAN L P. Current status and prospect of researches on atmospheric refraction error correction method in radar system[J]. Journal of Henan Normal University (Natural Science Edition), 2016, 44(4): 45-52. (in Chinese).
    [27] 司文涛, 王伟超, 袁光福, 等. 基于测角交汇的大气折射修正方法[J]. 激光与光电子学进展,2020,57(13):130102.

    SI W T, WANG W CH, YUAN G F, et al. Atmospheric refraction correction method based on angular intersection[J]. Laser & Optoelectronics Progress, 2020, 57(13): 130102. (in Chinese).
    [28] 王旭良, 戴正旭, 陈红英. 一种基于海上探空气象数据的大气折射率模型[J]. 飞行器测控学报,2015,34(1):36-41.

    WANG X L, DAI ZH X, CHEN H Y. An atmospheric refractivity model based on maritime radiosonde data[J]. Journal of Spacecraft TT& C Technology, 2015, 34(1): 36-41. (in Chinese).
    [29] YU D CH, LI H T, LI B Q. A comparison of models for correcting astronomical atmospheric refraction[J]. Proceedings of SPIE, 2020, 11763: 1176309.
    [30] 武宇翔, 张洪波, 孔德庆, 等. 基于实时参数的大气折射模型和射电望远镜指向修正方法[J]. 光子学报,2019,48(8):0811001. doi: 10.3788/gzxb20194808.0811001

    WU Y X, ZHANG H B, KONG D Q, et al. Astronomical refraction model based on real-time parameters and research of radio telescope pointing calibration method[J]. Acta Photonica Sinica, 2019, 48(8): 0811001. (in Chinese). doi: 10.3788/gzxb20194808.0811001
    [31] 张国亭, 王宏, 朱庆林, 等. 电波大气折射误差精细化修正系统设计与验证[J]. 电波科学学报,2023,38(6):1074-1081. doi: 10.12265/j.cjors.2022263

    ZHANG G T, WANG H, ZHU Q L, et al. Design and verification of high precision correction system for radio wave atmospheric refraction error[J]. Chinese Journal of Radio Science, 2023, 38(6): 1074-1081. (in Chinese). doi: 10.12265/j.cjors.2022263
    [32] 成印河, 彭上博, 赵彬彬, 等. 两种数据在海洋大气折射环境中的应用评估[J]. 电波科学学报,2023,38(3):491-501. doi: 10.12265/j.cjors.2022169

    CHENG Y H, PENG SH B, ZHAO B B, et al. Estimation of two reanalysis datasets on the application to atmospheric refractive environment over the global Sea[J]. Chinese Journal of Radio Science, 2023, 38(3): 491-501. (in Chinese). doi: 10.12265/j.cjors.2022169
    [33] 段成林, 马传令, 曹建峰, 等. 一种低仰角对流层折射修正的新方法[J]. 红外与激光工程,2012,41(5):1195-1199.

    DUAN CH L, MA CH L, CAO J F, et al. A new method on tropospheric refraction correction at low elevation[J]. Infrared and Laser Engineering, 2012, 41(5): 1195-1199. (in Chinese).
    [34] ØSTENSTAD P, MELTZER M M. Measuring refractivity profiles using shipborne unmanned aerial vehicle[C]. Proceedings of the OCEANS 2023 - Limerick, IEEE, 2023: 1-6.
    [35] 汪昭凯, 计一飞, 董臻, 等. 地基空间目标监视雷达大气折射误差修正方法研究[J]. 电波科学学报,2024,39(3):570-578. doi: 10.12265/j.cjors.2023164

    WANG ZH K, JI Y F, DONG ZH, et al. Atmospheric refraction error correction approach for ground-based space-target surveillance radar[J]. Chinese Journal of Radio Science, 2024, 39(3): 570-578. (in Chinese). doi: 10.12265/j.cjors.2023164
    [36] 唐新杰, 刘默然, 乔建东, 等. 空间目标监视雷达大气折射修正技术研究[J]. 电波科学学报,2024,39(1):148-155. doi: 10.12265/j.cjors.2023006

    TANG X J, LIU M R, QIAO J D, et al. Atmospheric refraction correction technology for space target surveillance radar[J]. Chinese Journal of Radio Science, 2024, 39(1): 148-155. (in Chinese). doi: 10.12265/j.cjors.2023006
    [37] LEWIS O, BRUNT C, KITCHEN M. A new method of retrieving atmospheric refractivity structure[J]. International Journal of Remote Sensing, 2023, 44(3): 749-785. doi: 10.1080/01431161.2023.2170192
    [38] LEWIS O, BRUNT C, KITCHEN M, et al. A new method of retrieving atmospheric refractivity[J]. Proceedings of SPIE, 2023, 12730: 127300G.
    [39] 田斌, 张厶允, 陈子豪, 等. ADS-B信号在对流层大气波导中的传播性能[J]. 海军工程大学学报,2024,36(1):8-14.

    TIAN B, ZHANG S Y, CHEN Z H, et al. Propagation performance of ADS-B signal in tropospheric atmospheric duct[J]. Journal of Naval University of Engineering, 2024, 36(1): 8-14. (in Chinese).
    [40] 孙中琳, 刘清惓, 杨杰, 等. 一种自然通风防辐射罩的设计与研究[J]. 科学技术与工程,2021,21(31):13262-13267.

    SUN ZH L, LIU Q Q, YANG J, et al. Design and research of a natural ventilation radiation shield[J]. Science Technology and Engineering, 2021, 21(31): 13262-13267. (in Chinese).
    [41] 雷连发, 卢建平, 朱磊, 等. 多通道地基微波辐射计大气遥感[J]. 遥感学报,2014,18(1):180-191.

    LEI L F, LU J P, ZHU L, et al. Atmospheric remote sensing using multi-channel ground-based microwave radiometer[J]. Journal of Remote Sensing, 2014, 18(1): 180-191. (in Chinese).
    [42] 习锋杰, 杨轶, 韩凯, 等. 一种测量蒙气色差的方法及装置: 中国, 108152218A[P]. 2018-06-12.

    XI F J, YANG Y, HAN K, et al. Method and device for measuring atmospheric refraction difference: CN, 108152218A[P]. 2018-06-12. (in Chinese).
    [43] 侯再红, 靖旭, 何枫, 等. 一种基于彩色相机通道差分的测量蒙气色差系统及方法: 中国, 115855835A[P]. 2023-03-28.

    HONG Z H, JING X, HE F, et al. System and method for measuring gas color difference based on color camera channel difference: CN, 115855835A[P]. 2023-03-28. (in Chinese).
    [44] LI Y, HOU Z H, JING X, et al. Comparison and analysis of the results of measuring chromatic dispersion angles based on the three-hole optical observation method[J]. Applied Optics, 2023, 62(25): 6705-6713. doi: 10.1364/AO.498223
    [45] 金群锋. 大气折射率影响因素的研究[D]. 杭州: 浙江大学, 2006.

    JIN Q F. Study of factors affecting atmospheric refractive index[D]. Hangzhou: Zhejiang University, 2006. (in Chinese)
    [46] BARRELL H, SEARS J E. The refraction and dispersion of air and dispersion of air for the visible spectrum[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1939, 238(786): 1-64.
    [47] EDLÉN B. The dispersion of standard air[J]. Journal of the Optical Society of America, 1953, 43(5): 339-344. doi: 10.1364/JOSA.43.000339
    [48] EDLÉN B. The refractive index of air[J]. Metrologia, 1966, 2(2): 71-80. doi: 10.1088/0026-1394/2/2/002
    [49] ERICKSON K E. Investigation of the invariance of atmospheric dispersion with a long-path refractometer[J]. Journal of the Optical Society of America, 1962, 52(7): 777-780. doi: 10.1364/JOSA.52.000777
    [50] BIRCH K P, DOWNS M J. The results of a comparison between calculated and measured values of the refractive index of air[J]. Journal of Physics E: Scientific Instruments, 1988, 21(7): 694-695. doi: 10.1088/0022-3735/21/7/015
    [51] OWENS J C. Optical refractive index of air: dependence on pressure, temperature and composition[J]. Applied Optics, 1967, 6(1): 51-59. doi: 10.1364/AO.6.000051
    [52] PECK E R, REEDER K. Dispersion of air[J]. Journal of the Optical Society of America, 1972, 62(8): 958-962. doi: 10.1364/JOSA.62.000958
    [53] JONES F E. Simplified equation for calculating the refractivity of air[J]. Applied Optics, 1980, 19(24): 4129-4130. doi: 10.1364/AO.19.004129
    [54] JONES F E. The refractivity of air[J]. Journal of Research of the National Bureau of Standards, 1981, 86(1): 27-32. doi: 10.6028/jres.086.002
    [55] MATSUMOTO H. The refractive index of moist air in the 3-μm region[J]. Metrologia, 1982, 18(2): 49-52. doi: 10.1088/0026-1394/18/2/001
    [56] BIRCH K P, DOWNS M J. An updated Edlén equation for the refractive index of air[J]. Metrologia, 1993, 30(3): 155-162. doi: 10.1088/0026-1394/30/3/004
    [57] BIRCH K P, DOWNS M J. Correction to the updated Edlén equation for the refractive index of air[J]. Metrologia, 1994, 31(4): 315-316. doi: 10.1088/0026-1394/31/4/006
    [58] CIDDOR P E. Refractive index of air: new equations for the visible and near infrared[J]. Applied Optics, 1996, 35(9): 1566-1573. doi: 10.1364/AO.35.001566
    [59] CIDDOR P E, HILL R J. Refractive index of air. 2. Group index[J]. Applied Optics, 1999, 38(9): 1663-1667. doi: 10.1364/AO.38.001663
    [60] RÜEGER J M. Report of the ad-hoc working party on refractive indices of light, infrared and radio waves in the atmosphere of the IAG Special Comission SC3-Fundamental Constants (SCFC)[C]. Proceedings of the 22nd General Assembly of IUGG, International Association of Geodesy, 1999.
    [61] RÜEGER J M. Refractive indices of light, infrared and radio waves in the atmosphere[R]. Sydney: School of Surveying and Spatial Information Systems, University of New South Wales, 2002.
    [62] 郁道银, 谈恒英. 工程光学[M]. 4版. 北京: 机械工业出版社, 2016.

    YU D Y, TAN H Y. Engineering Optics[M]. 4th ed. Beijing: China Machine Press, 2016. (in Chinese).
    [63] RÜEGER J M. Refractive index formulae for radio waves[C]. Proceedings of the FIG XXII International Congress, 2002: 1-13.
    [64] THAYER G D. An improved equation for the radio refractive index of air[J]. Radio Science, 1974, 9(10): 803-807. doi: 10.1029/RS009i010p00803
    [65] HASEGAWA S, STOKESBERRY D P. Automatic digital microwave hygrometer[J]. Review of Scientific Instruments, 1975, 46(7): 867-873. doi: 10.1063/1.1134331
    [66] BEVIS M, BUSINGER S, CHISWELL S, et al. GPS meteorology: mapping zenith wet delays onto precipitable water[J]. Journal of Applied Meteorology and Climatology, 1994, 33(3): 379-386. doi: 10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2
    [67] LIEBE H J. MPM—An atmospheric millimeter-wave propagation model[J]. International Journal of Infrared and Millimeter Waves, 1989, 10(6): 631-650. doi: 10.1007/BF01009565
    [68] LIEBE H J. An updated model for millimeter wave propagation in moist air[J]. Radio Science, 1985, 20(5): 1069-1089. doi: 10.1029/RS020i005p01069
    [69] LIEBE H J, HUFFORD G A, COTTON M. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz[C]. Proceedings of the Atmospheric Propagation Effects Through Natural and Man-Made Obscurants for Visible to MM-Wave Radiation, 1993: 8-32.
    [70] LI Y, JING X, HOU Z H, et al. Research and analysis on the chromatic dispersion of the horizontal atmosphere near the ground[J]. Proceedings of SPIE, 2022, 12448: 124480Q.
    [71] 武鹏飞, 李玉剑, 邵士勇, 等. 基于格点化大气参数廓线模式的低仰角大气折射修正方法[J]. 光学学报,2017,37(6):0601004. doi: 10.3788/AOS201737.0601004

    WU P F, LI Y J, SHAO SH Y, et al. Low elevation atmospheric refraction correction method based on gridding atmospheric parameter profile mode[J]. Acta Optica Sinica, 2017, 37(6): 0601004. (in Chinese). doi: 10.3788/AOS201737.0601004
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  85
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-29
  • 修回日期:  2024-07-09
  • 录用日期:  2024-09-12
  • 网络出版日期:  2024-10-16

目录

    /

    返回文章
    返回