Progress in research on the effect of atmospheric refraction and correction techniques
-
摘要:
为了深入了解大气折射的相关进展,本文从其影响、公式发展以及修正原理等方面进行了介绍。针对大气折射的影响,本文根据研究领域涉及的波段不同,将其划分为应用于光学成像、激光传输和光电跟踪等领域的可见光到红外波段,以及应用于雷达测量和卫星探测等领域的无线电波段。这两个波段在实际处理过程中选取的计算公式是不同的。根据折射率公式的发展历史对折射率公式进行介绍,并指出了各公式的局限性。目前对于前者波段公式的最佳选择是Rüeger学者所总结的公式,而对于后者建议选择ITU-R P.453-13建议书中的无线电折射率公式。最后介绍了获取大气折射率的传统计算方法和光学测量方法。传统计算方法是基于大气模式或气象数据建立的模型,通过公式计算或模型拟合来确定特定区域的折射率。这种方法在单一环境或平均范围内具有一定的准确性。而光学测量方法不需要大气模型作为基础,更不用依赖气象参数,测量结果数据实时性高、更具路径代表性,能弥补一些传统方式的弊端,更符合未来的发展趋势。
Abstract:This paper presents various aspects of atmospheric refraction to gain insight into the advances in this field. It divides the effects of atmospheric refraction into two categories: the visible-to-infrared bands used in research fields such as optical imaging, laser transmission, and optoelectronic tracking and the radio band used in radar measurements and satellite detection. The calculation formulas for these two bands are different in their practical treatment. This paper introduces the refractive index formulas according to the refractive index formula's development history and points out the limitations of each formula. The current best choice for the former formula is the one summarized by Rüeger scholars; for the latter, it is recommended to choose the radio refractive index formula in the Rec. ITU-R P.453-14. In addition, the relationship between the refractive index of the Earth's surface and altitude, reference data for the refractive index on a global scale, and statistical distributions for the calculation of the refractive index gradient are given in the recommendation. Finally, traditional calculation methods for obtaining atmospheric refraction and optical observation methods are presented. The former study is based on the modeling of atmospheric patterns or meteorological data, formulae for refractive indices in specific regions, or model fitting to satisfy accuracy in a single environment or on an average scale. The optical measurement method does not need an atmospheric model as a basis, not does it rely on meteorological parameters. The measurement results of the data are real-time and more representative of the path. It can make up for some of shortcomings of the traditional methods, and is more in line with future development trend of the future.
-
Key words:
- atmospheric refraction /
- refractive index equation /
- atmospheric optics /
- optical imaging
-
表 1 3种光学测量方法效果对比
Table 1. Comparison of three optical measurement methods
双信标光学
测量方法三孔光学
观测方法彩色相机通道差分
光学测量方法相同点 理论基础:到达角起伏与波长无关; 测量对象:蒙气色差; 测量结果:实时性高、更具路径代表性、无需依赖大气数据。 不同点 测量方式 主动式 被动式 主动式/被动式 接收传感器 灰度传感器 灰度传感器 彩色传感器 应用场景 近地面水平或
斜程蒙气色差整层蒙气色差 近地面水平、斜程
或整层蒙气色差应用情况 方法提出待验证 已应用于观测 方法提出待验证 -
[1] WANG ZH, JIANG J. Refraction surface-based stellar atmospheric refraction correction and error estimation for terrestrial star tracker[J]. IEEE Sensors Journal, 2022, 22(10): 9685-9696. doi: 10.1109/JSEN.2022.3164661 [2] WANG Y L, ZHU Y, WANG M, et al. Atmospheric refraction calibration of geometric positioning for optical remote sensing satellite[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(12): 2130-2134. doi: 10.1109/LGRS.2019.2963626 [3] HAN W, HAN SH D. Research on the influence of atmospheric vertical refraction on trigonometric leveling survey in qinling mountains[J]. IOP Conference Series: Earth and Environmental Science, 2021, 826(1): 012039. doi: 10.1088/1755-1315/826/1/012039 [4] LOVCHY I L. Calculation of refraction angles for various spherically layered atmospheric models[J]. Journal of Optical Technology, 2021, 88(2): 60-65. doi: 10.1364/JOT.88.000060 [5] ZHAO F M, DAI C M, WU P F, et al. Effect of atmospheric refraction on limb detecting[J]. Proceedings of SPIE, 2019, 11455: 114556B. [6] STONE R C. An accurate method for computing atmospheric refraction[J]. Publications of the Astronomical Society of the Pacific, 1996, 108(729): 1051-1058. [7] GUBLER J, TYTLER D. Differential atmospheric refraction and limitations on the relative astrometric accuracy of large telescopes[J]. Publications of the Astronomical Society of the Pacific, 1998, 110(748): 738-746. doi: 10.1086/316172 [8] JIANG D G, ZHANG P, DENG K, et al. The atmospheric refraction and beam wander influence on the acquisition of LEO-Ground optical communication link[J]. Optik, 2014, 125(15): 3986-3990. doi: 10.1016/j.ijleo.2014.01.146 [9] 张捍卫, 雷伟伟, 丁安民. 低高度角处的蒙气差级数展开式[J]. 天文学报,2013,54(6):562-568. doi: 10.3969/j.issn.0001-5245.2013.06.006ZHANG H W, LEI W W, DING A M. The series expansion of astronomical atmospheric refraction for low vertical angle[J]. Acta Astronomica Sinica, 2013, 54(6): 562-568. (in Chinese). doi: 10.3969/j.issn.0001-5245.2013.06.006 [10] 王成良, 胡胜敏, 饶鹏. 静止轨道卫星红外探测大气透过率与蒙气差分析[J]. 光学与光电技术,2013,11(4):33-36.WANG CH L, HU SH M, RAO P. Analysis of atmospheric transmittance and refraction on geostationary satellite-based infrared detection[J]. Optics & Optoelectronic Technology, 2013, 11(4): 33-36. (in Chinese). [11] CORBARD T, IKHLEF R, MORAND F, et al. On the importance of astronomical refraction for modern solar astrometric measurements[J]. Monthly Notices of the Royal Astronomical Society, 2019, 483(3): 3865-3877. doi: 10.1093/mnras/sty3391 [12] 王冠, 王惠林, 骞琨, 等. 机载光电系统目标定位大气折射修正研究[J]. 应用光学,2022,43(4):641-647. doi: 10.5768/JAO202243.0401008WANG G, WANG H L, QIAN K, et al. Research on atmospheric refraction correction of airborne electro-optical system target location[J]. Journal of Applied Optics, 2022, 43(4): 641-647. (in Chinese). doi: 10.5768/JAO202243.0401008 [13] ABDULLAH-AL-MAMUN M, VOELZ D. Effects of temperature inversion in the lower atmosphere on dispersion and angle of arrival of highly directional beams[J]. Optical Engineering, 2020, 59(8): 081802. [14] VAN DEN BORN J A, JELLEMA W. Quantification of the expected residual dispersion of the MICADO Near-IR imaging instrument[J]. Monthly Notices of the Royal Astronomical Society, 2020, 496(4): 4266-4275. doi: 10.1093/mnras/staa1870 [15] 杨晓东, 姜璐. 基于天体红外测量的蒙气差计算方法[J]. 红外与激光工程,2002,31(2):121-124. doi: 10.3969/j.issn.1007-2276.2002.02.007YANG X D, JIANG L. Calculation of the refraction based on the measurement of infrared ray from celestial body[J]. Infrared and Laser Engineering, 2002, 31(2): 121-124. (in Chinese). doi: 10.3969/j.issn.1007-2276.2002.02.007 [16] 谭碧涛, 景春元, 朱启海, 等. 低仰角蒙气差精密修正的新方法[J]. 应用光学,2006,27(6):563-566. doi: 10.3969/j.issn.1002-2082.2006.06.021TAN B T, JING CH Y, ZHU Q H, et al. New method of precise correction for atmosphere refraction in low elevation[J]. Journal of Applied Optics, 2006, 27(6): 563-566. (in Chinese). doi: 10.3969/j.issn.1002-2082.2006.06.021 [17] 门涛, 史金霞, 徐蓉, 等. 基于低仰角红外测量的蒙气差修正方法[J]. 红外与激光工程,2016,45(1):0117004. doi: 10.3788/m0001820164501.117004MEN T, SHI J X, XU R, et al. Correction method of atmospheric refraction based on the low elevation infrared measurement[J]. Infrared and Laser Engineering, 2016, 45(1): 0117004. (in Chinese). doi: 10.3788/m0001820164501.117004 [18] 程煜, 王雪莹, 盛卫东, 等. 一种基于恒星光线偏折的大气折射率估计方法[J]. 光学学报,2019,39(7):0701001. doi: 10.3788/AOS201939.0701001CHENG Y, WANG X Y, SHENG W D, et al. Atmospheric refractivity estimation method based on stellar light deflection[J]. Acta Optica Sinica, 2019, 39(7): 0701001. (in Chinese). doi: 10.3788/AOS201939.0701001 [19] 韩燕, 强希文, 冯建伟, 等. 大气折射率高度分布模式及其应用[J]. 红外与激光工程,2009,38(2):267-271.HAN Y, QIANG X W, FENG J W, et al. Height distribution profiles and its application of atmosphere refractive index[J]. Infrared and Laser Engineering, 2009, 38(2): 267-271. (in Chinese). [20] 王亚伟, 周维虎, 王中宇, 等. 激光跟踪测量系统大气折射率修正方法[J]. 光电子技术,2011,31(2):83-86,97.WANG Y W, ZHOU W H, WANG ZH Y, et al. Correction method of air refractivity for laser tracking measurement system[J]. Optoelectronic Technology, 2011, 31(2): 83-86,97. (in Chinese). [21] 吕炜煜, 苑克娥, 胡顺星, 等. 干旱地区大气折射对光电工程的影响[J]. 红外与激光工程,2015,44(1):291-297.LV W Y, YUAN K E, HU SH X, et al. Effection of atmospheric refraction on opto-electronic engineering in arid area[J]. Infrared and Laser Engineering, 2015, 44(1): 291-297. (in Chinese). [22] YE J, HE H Q, ZHANG L, et al. An accurate calculation of the atmospheric refraction error of optical remote sensing images based on the fine-layered light vector method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1514-1525. doi: 10.1109/JSTARS.2022.3143883 [23] 杨玉峰, 宋宁宁, 韩香. 基于NCEP数据库的星光大气折射修正模型[J]. 光学学报,2023,43(18):1801002. doi: 10.3788/AOS230452YANG Y F, SONG N N, HAN X. Corrected starlight atmospheric refraction model based on NCEP database[J]. Acta Optica Sinica, 2023, 43(18): 1801002. (in Chinese). doi: 10.3788/AOS230452 [24] 习锋杰, 杨轶, 靖旭, 等. 水平蒙气色差对光轴定标的影响[J]. 量子电子学报,2020,37(4):386-391.XI F J, YANG Y, JING X, et al. Dispersion influence of horizontal atmospheric refraction on calibration of optical axis[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 386-391. (in Chinese). [25] 刘玉丽, 王钰茹, 谢晨波. 转动拉曼激光雷达用于大气折射修正的研究[J]. 大气与环境光学学报,2023,18(5):426-433.LIU Y L, WANG Y R, XIE CH B. Investigation of atmospheric refractive modification based on rotational Raman lidar[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(5): 426-433. (in Chinese). [26] 张瑜, 甘利萍. 大气折射误差修正研究现状与展望[J]. 河南师范大学学报(自然科学版),2016,44(4):45-52.ZHANG Y, GAN L P. Current status and prospect of researches on atmospheric refraction error correction method in radar system[J]. Journal of Henan Normal University (Natural Science Edition), 2016, 44(4): 45-52. (in Chinese). [27] 司文涛, 王伟超, 袁光福, 等. 基于测角交汇的大气折射修正方法[J]. 激光与光电子学进展,2020,57(13):130102.SI W T, WANG W CH, YUAN G F, et al. Atmospheric refraction correction method based on angular intersection[J]. Laser & Optoelectronics Progress, 2020, 57(13): 130102. (in Chinese). [28] 王旭良, 戴正旭, 陈红英. 一种基于海上探空气象数据的大气折射率模型[J]. 飞行器测控学报,2015,34(1):36-41.WANG X L, DAI ZH X, CHEN H Y. An atmospheric refractivity model based on maritime radiosonde data[J]. Journal of Spacecraft TT& C Technology, 2015, 34(1): 36-41. (in Chinese). [29] YU D CH, LI H T, LI B Q. A comparison of models for correcting astronomical atmospheric refraction[J]. Proceedings of SPIE, 2020, 11763: 1176309. [30] 武宇翔, 张洪波, 孔德庆, 等. 基于实时参数的大气折射模型和射电望远镜指向修正方法[J]. 光子学报,2019,48(8):0811001. doi: 10.3788/gzxb20194808.0811001WU Y X, ZHANG H B, KONG D Q, et al. Astronomical refraction model based on real-time parameters and research of radio telescope pointing calibration method[J]. Acta Photonica Sinica, 2019, 48(8): 0811001. (in Chinese). doi: 10.3788/gzxb20194808.0811001 [31] 张国亭, 王宏, 朱庆林, 等. 电波大气折射误差精细化修正系统设计与验证[J]. 电波科学学报,2023,38(6):1074-1081. doi: 10.12265/j.cjors.2022263ZHANG G T, WANG H, ZHU Q L, et al. Design and verification of high precision correction system for radio wave atmospheric refraction error[J]. Chinese Journal of Radio Science, 2023, 38(6): 1074-1081. (in Chinese). doi: 10.12265/j.cjors.2022263 [32] 成印河, 彭上博, 赵彬彬, 等. 两种数据在海洋大气折射环境中的应用评估[J]. 电波科学学报,2023,38(3):491-501. doi: 10.12265/j.cjors.2022169CHENG Y H, PENG SH B, ZHAO B B, et al. Estimation of two reanalysis datasets on the application to atmospheric refractive environment over the global Sea[J]. Chinese Journal of Radio Science, 2023, 38(3): 491-501. (in Chinese). doi: 10.12265/j.cjors.2022169 [33] 段成林, 马传令, 曹建峰, 等. 一种低仰角对流层折射修正的新方法[J]. 红外与激光工程,2012,41(5):1195-1199.DUAN CH L, MA CH L, CAO J F, et al. A new method on tropospheric refraction correction at low elevation[J]. Infrared and Laser Engineering, 2012, 41(5): 1195-1199. (in Chinese). [34] ØSTENSTAD P, MELTZER M M. Measuring refractivity profiles using shipborne unmanned aerial vehicle[C]. Proceedings of the OCEANS 2023 - Limerick, IEEE, 2023: 1-6. [35] 汪昭凯, 计一飞, 董臻, 等. 地基空间目标监视雷达大气折射误差修正方法研究[J]. 电波科学学报,2024,39(3):570-578. doi: 10.12265/j.cjors.2023164WANG ZH K, JI Y F, DONG ZH, et al. Atmospheric refraction error correction approach for ground-based space-target surveillance radar[J]. Chinese Journal of Radio Science, 2024, 39(3): 570-578. (in Chinese). doi: 10.12265/j.cjors.2023164 [36] 唐新杰, 刘默然, 乔建东, 等. 空间目标监视雷达大气折射修正技术研究[J]. 电波科学学报,2024,39(1):148-155. doi: 10.12265/j.cjors.2023006TANG X J, LIU M R, QIAO J D, et al. Atmospheric refraction correction technology for space target surveillance radar[J]. Chinese Journal of Radio Science, 2024, 39(1): 148-155. (in Chinese). doi: 10.12265/j.cjors.2023006 [37] LEWIS O, BRUNT C, KITCHEN M. A new method of retrieving atmospheric refractivity structure[J]. International Journal of Remote Sensing, 2023, 44(3): 749-785. doi: 10.1080/01431161.2023.2170192 [38] LEWIS O, BRUNT C, KITCHEN M, et al. A new method of retrieving atmospheric refractivity[J]. Proceedings of SPIE, 2023, 12730: 127300G. [39] 田斌, 张厶允, 陈子豪, 等. ADS-B信号在对流层大气波导中的传播性能[J]. 海军工程大学学报,2024,36(1):8-14.TIAN B, ZHANG S Y, CHEN Z H, et al. Propagation performance of ADS-B signal in tropospheric atmospheric duct[J]. Journal of Naval University of Engineering, 2024, 36(1): 8-14. (in Chinese). [40] 孙中琳, 刘清惓, 杨杰, 等. 一种自然通风防辐射罩的设计与研究[J]. 科学技术与工程,2021,21(31):13262-13267.SUN ZH L, LIU Q Q, YANG J, et al. Design and research of a natural ventilation radiation shield[J]. Science Technology and Engineering, 2021, 21(31): 13262-13267. (in Chinese). [41] 雷连发, 卢建平, 朱磊, 等. 多通道地基微波辐射计大气遥感[J]. 遥感学报,2014,18(1):180-191.LEI L F, LU J P, ZHU L, et al. Atmospheric remote sensing using multi-channel ground-based microwave radiometer[J]. Journal of Remote Sensing, 2014, 18(1): 180-191. (in Chinese). [42] 习锋杰, 杨轶, 韩凯, 等. 一种测量蒙气色差的方法及装置: 中国, 108152218A[P]. 2018-06-12.XI F J, YANG Y, HAN K, et al. Method and device for measuring atmospheric refraction difference: CN, 108152218A[P]. 2018-06-12. (in Chinese). [43] 侯再红, 靖旭, 何枫, 等. 一种基于彩色相机通道差分的测量蒙气色差系统及方法: 中国, 115855835A[P]. 2023-03-28.HONG Z H, JING X, HE F, et al. System and method for measuring gas color difference based on color camera channel difference: CN, 115855835A[P]. 2023-03-28. (in Chinese). [44] LI Y, HOU Z H, JING X, et al. Comparison and analysis of the results of measuring chromatic dispersion angles based on the three-hole optical observation method[J]. Applied Optics, 2023, 62(25): 6705-6713. doi: 10.1364/AO.498223 [45] 金群锋. 大气折射率影响因素的研究[D]. 杭州: 浙江大学, 2006.JIN Q F. Study of factors affecting atmospheric refractive index[D]. Hangzhou: Zhejiang University, 2006. (in Chinese) [46] BARRELL H, SEARS J E. The refraction and dispersion of air and dispersion of air for the visible spectrum[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1939, 238(786): 1-64. [47] EDLÉN B. The dispersion of standard air[J]. Journal of the Optical Society of America, 1953, 43(5): 339-344. doi: 10.1364/JOSA.43.000339 [48] EDLÉN B. The refractive index of air[J]. Metrologia, 1966, 2(2): 71-80. doi: 10.1088/0026-1394/2/2/002 [49] ERICKSON K E. Investigation of the invariance of atmospheric dispersion with a long-path refractometer[J]. Journal of the Optical Society of America, 1962, 52(7): 777-780. doi: 10.1364/JOSA.52.000777 [50] BIRCH K P, DOWNS M J. The results of a comparison between calculated and measured values of the refractive index of air[J]. Journal of Physics E: Scientific Instruments, 1988, 21(7): 694-695. doi: 10.1088/0022-3735/21/7/015 [51] OWENS J C. Optical refractive index of air: dependence on pressure, temperature and composition[J]. Applied Optics, 1967, 6(1): 51-59. doi: 10.1364/AO.6.000051 [52] PECK E R, REEDER K. Dispersion of air[J]. Journal of the Optical Society of America, 1972, 62(8): 958-962. doi: 10.1364/JOSA.62.000958 [53] JONES F E. Simplified equation for calculating the refractivity of air[J]. Applied Optics, 1980, 19(24): 4129-4130. doi: 10.1364/AO.19.004129 [54] JONES F E. The refractivity of air[J]. Journal of Research of the National Bureau of Standards, 1981, 86(1): 27-32. doi: 10.6028/jres.086.002 [55] MATSUMOTO H. The refractive index of moist air in the 3-μm region[J]. Metrologia, 1982, 18(2): 49-52. doi: 10.1088/0026-1394/18/2/001 [56] BIRCH K P, DOWNS M J. An updated Edlén equation for the refractive index of air[J]. Metrologia, 1993, 30(3): 155-162. doi: 10.1088/0026-1394/30/3/004 [57] BIRCH K P, DOWNS M J. Correction to the updated Edlén equation for the refractive index of air[J]. Metrologia, 1994, 31(4): 315-316. doi: 10.1088/0026-1394/31/4/006 [58] CIDDOR P E. Refractive index of air: new equations for the visible and near infrared[J]. Applied Optics, 1996, 35(9): 1566-1573. doi: 10.1364/AO.35.001566 [59] CIDDOR P E, HILL R J. Refractive index of air. 2. Group index[J]. Applied Optics, 1999, 38(9): 1663-1667. doi: 10.1364/AO.38.001663 [60] RÜEGER J M. Report of the ad-hoc working party on refractive indices of light, infrared and radio waves in the atmosphere of the IAG Special Comission SC3-Fundamental Constants (SCFC)[C]. Proceedings of the 22nd General Assembly of IUGG, International Association of Geodesy, 1999. [61] RÜEGER J M. Refractive indices of light, infrared and radio waves in the atmosphere[R]. Sydney: School of Surveying and Spatial Information Systems, University of New South Wales, 2002. [62] 郁道银, 谈恒英. 工程光学[M]. 4版. 北京: 机械工业出版社, 2016.YU D Y, TAN H Y. Engineering Optics[M]. 4th ed. Beijing: China Machine Press, 2016. (in Chinese). [63] RÜEGER J M. Refractive index formulae for radio waves[C]. Proceedings of the FIG XXII International Congress, 2002: 1-13. [64] THAYER G D. An improved equation for the radio refractive index of air[J]. Radio Science, 1974, 9(10): 803-807. doi: 10.1029/RS009i010p00803 [65] HASEGAWA S, STOKESBERRY D P. Automatic digital microwave hygrometer[J]. Review of Scientific Instruments, 1975, 46(7): 867-873. doi: 10.1063/1.1134331 [66] BEVIS M, BUSINGER S, CHISWELL S, et al. GPS meteorology: mapping zenith wet delays onto precipitable water[J]. Journal of Applied Meteorology and Climatology, 1994, 33(3): 379-386. doi: 10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2 [67] LIEBE H J. MPM—An atmospheric millimeter-wave propagation model[J]. International Journal of Infrared and Millimeter Waves, 1989, 10(6): 631-650. doi: 10.1007/BF01009565 [68] LIEBE H J. An updated model for millimeter wave propagation in moist air[J]. Radio Science, 1985, 20(5): 1069-1089. doi: 10.1029/RS020i005p01069 [69] LIEBE H J, HUFFORD G A, COTTON M. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz[C]. Proceedings of the Atmospheric Propagation Effects Through Natural and Man-Made Obscurants for Visible to MM-Wave Radiation, 1993: 8-32. [70] LI Y, JING X, HOU Z H, et al. Research and analysis on the chromatic dispersion of the horizontal atmosphere near the ground[J]. Proceedings of SPIE, 2022, 12448: 124480Q. [71] 武鹏飞, 李玉剑, 邵士勇, 等. 基于格点化大气参数廓线模式的低仰角大气折射修正方法[J]. 光学学报,2017,37(6):0601004. doi: 10.3788/AOS201737.0601004WU P F, LI Y J, SHAO SH Y, et al. Low elevation atmospheric refraction correction method based on gridding atmospheric parameter profile mode[J]. Acta Optica Sinica, 2017, 37(6): 0601004. (in Chinese). doi: 10.3788/AOS201737.0601004