United calibration method for ship-borne radiation measuring system based on ambient temperature self-adaptive correction
-
摘要:
红外数据作为信息化数据库的重要组成部分,在夜视侦察、武器制导、远程预警等方面具有广泛应用。红外辐射特性测量系统在环境温度变化时会产生温漂,从而导致目标的红外反演精度受到较大影响。针对该问题,本文提出一种基于环境温度自适应修正的内外联合定标方法。通过自适应插值的方式对环境温度变化的影响进行修正。以高精度面源黑体作为目标进行辐射反演测量试验。实验结果表明:最小误差为6.82%、最大误差为10.21%。同时对水上动态目标开展辐射特性反演实验,得到高置信度的实测目标辐射特性数据。通过黑体以及水上动态目标的测量试验可以得到:本方法可以在海洋气候复杂环境下实现环境温度变化对辐射反演精度的影响修正。验证了所提出的定标算法的有效性,同时可以基于修正参数进行红外系统环境温度敏感性的有效评估测试。
Abstract:As an important component of the information database, infrared data has been extensive used in night vision, weapon guidance, long-range early warning systems and more. Shipborne infrared radiation characteristic measuring systems work in the marine environment, where the variation in temperature and humidity is vast. In view of the fact that variation in ambient temperature greatly affects the measuring system, this paper presents an internal and external united calibration method based on ambient temperature self-adaptive correction. It corrects temperature influence through self-adaptive interpolation, thus confirming the validity of the proposed measuring system for sensibility and responsive characteristics of external targets. Radiant calibration in different infrared wavebands has been implemented by the measuring system, serial temperatures have been set in each integrating time to calibrate and fit, and the method's effectiveness has been determined by error statistics. Meanwhile, the radiation characteristics of high-precision blackbody and aquatic targets are inversed. As a result, the minimum and the maximum errors obtained for blackbody measuring precision were 6.82% and 10.21%, respectively. The high confidence coefficient for measured radiant inversion value verifies the effectiveness and application prospects of the calibration method presented in this paper.
-
Key words:
- self-adaptive /
- radiant calibration /
- characteristic inversion /
- ship-borne system
-
表 1 不同条件下定标探测器灰度值
Table 1. The detector’s gray value in different calibration conditions
环境
温度
(°C)黑体温度(°C) 20 25 30 35 40 10 1581.8889 1636.4444 1688.7778 1757.3333 1836.4444 11 1631.4444 1724.1111 1801.8889 1916.5556 2047.3333 13 1698.1111 1747.8889 1786.3333 1843.1111 1914.4444 15 1881.7778 1951.2222 2046.7778 2143.4444 2241 15 1793.5556 1847.2222 1909.1111 1954.7778 2032.1111 27 2182.8889 2253.6667 2347.4444 2443 2539.5556 29 2201.3333 2299.1111 2399.5556 2508.8889 2640.3333 29 2287.8889 2356.1111 2432.5556 2521.6667 2610.4444 33 2651.3333 2702.8889 2762.5556 2839.2222 2916.7778 表 2 不同环境温度、特定积分时间下的修正结果
Table 2. Correction results at specific integration times and different ambient temperatures
25 35 45 55 65 环境温度为17 °C,
积分时间为1 ms1728 1934 2242 2640 3146 环境温度为22 °C,
积分时间为2 ms3598 4120 4892 5890 7155 环境温度为26 °C,
积分时间为3 ms5461 6298 7534 9124 11156 标准亮度(W/m2·Sr) 1.1757 1.6828 2.3563 3.2341 4.3585 1 ms拟合值(W/m2·Sr) 1.2064 1.6650 2.3492 3.2333 4.3588 2 ms拟合值(W/m2·Sr) 1.2202 1.6799 2.3589 3.2369 4.3504 3 ms拟合值(W/m2·Sr) 1.1998 1.6670 2.3577 3.2457 4.3806 平均误差(AVR)/% 2.82 0.72 0.05 0.14 0.11 均方根误差(RMS)/% 1.3 表 3 高精度面源黑体辐射反演结果
Table 3. High-precision surface blackbody’s radiation inversion results
黑体设置温度/ °C 设置温度对应的辐射亮度W/(m2·sr) 黑体温度测量值/ °C 辐射亮度测量值W/(m2·sr) 辐射亮度测量误差 85 7.5099 88 8.1122 8.02% 95 9.666 99 10.6533 10.21% 105 12.28 108 13.1627 7.19% 115 15.414 118 16.4653 6.82% 125 19.1332 129 20.7997 8.71% 表 4 船舶测试过程中相关信息汇总
Table 4. Summary of relevant information during ship-borne testing
船舶1 船舶2 船舶3 船舶4 船舶5 天气条件 24 °C,50%, 1018 hpa22 °C,68%, 1022 hpa北京时间 14:45 14:48 15:00 18:17 18:18 距离/km 3.1 2.5 3 2.1 2.9 积分时间/ms 4 4 4 4 4 透过率 0.4756 0.5074 0.4799 0.51 0.459 方位角 10.63 143.36 156.2 29.46 22.73 俯仰角 0.151 359.47 0.02 359.6 359.64 焦距/mm 400 400 400 400 400 -
[1] 余毅, 刘震宇, 孙志远, 等. 靶场光电测量设备发展现状及展望[J]. 光学学报,2023,43(6):0600002. doi: 10.3788/AOS221583YU Y, LIU ZH Y, SUN ZH Y, et al. Development status and prospect of photoelectric measurement equipment in range[J]. Acta Optica Sinca, 2023, 43(6): 0600002. (in Chinese). doi: 10.3788/AOS221583 [2] 何苹, 王莹莹, 樊雷, 等. 红外探测器对高超声速飞行器的作用距离分析[J]. 激光与红外,2020,50(6):682-690.HE P, WANG Y Y, FAN L, et al. Operation range analysis of the infrared detector for hypersonic flight vehicles[J]. Laser & Infrared, 2020, 50(6): 682-690. (in Chinese). [3] YANG G Q, SUN ZH Y, LI ZH, et al. Radiometric thermometry of point targets based on dual-band infrared imaging[J]. Applied Optics, 2024, 63(16): 4360-4365. doi: 10.1364/AO.523794 [4] 杨国庆, 李周, 赵晨, 等. 基于神经网络的非线性大气修正实现红外目标辐射测量[J]. 红外与激光工程,2020,49(5):20190413. doi: 10.3788/irla.24_2019-0413YANG G Q, LI ZH, ZHAO CH, et al. Nonlinear atmospheric correction based on neural network for infrared target radiometry[J]. Infrared and Laser Engineering, 2020, 49(5): 20190413. (in Chinese). doi: 10.3788/irla.24_2019-0413 [5] 陈卫, 汪中贤, 马东辉, 等. 非均匀热气体红外辐射特性计算与仿真[J]. 红外与激光工程,2010,39(1):17-21.CHEN W, WANG ZH X, MA D H, et al. Calculation and simulation of infrared radiation characteristics of non-uniform hot gas[J]. Infrared and Laser Engineering, 2010, 39(1): 17-21. (in Chinese). [6] 宗永红, 高昕, 李希宇, 等. 一种基于定标的红外图像非均匀性分区域校正算法[J]. 红外,2022,43(4):33-40.ZONG Y H, GAO X, LI X Y, et al. A nonuniformity regional correction algorithm for infrared image based on calibration[J]. Infrared, 2022, 43(4): 33-40. (in Chinese). [7] 马岩, 张帅, 刘元, 等. 基于天基定量实测数据的月球长波红外辐射特性研究[J]. 中国光学,2022,15(3):525-533. doi: 10.37188/CO.2021-0202MA Y, ZHANG SH, LIU Y, et al. Lunar long-wave infrared radiation characteristics based on space-based quantitative measured data[J]. Chinese Optics, 2022, 15(3): 525-533. (in Chinese). doi: 10.37188/CO.2021-0202 [8] 孙志远, 常松涛, 朱玮. 大口径、宽动态范围红外测量系统辐射定标方法[J]. 光学学报,2014,34(7):0712006. doi: 10.3788/AOS201434.0712006SUN ZH Y, CHANG S T, ZHU W. Radiation calibration method for infrared system with large aperture and broad dynamic range[J]. Acta Optica Sinca, 2014, 34(7): 0712006. (in Chinese). doi: 10.3788/AOS201434.0712006 [9] 殷丽梅, 乔兵, 刘俊池, 等. 地基红外辐射测量系统联合辐射定标法[J]. 光学学报,2018,38(4):0412001. doi: 10.3788/AOS201838.0412001YIN L M, QIAO B, LIU J CH, et al. Combined radiation calibration method for ground-based infrared radiation measurement system[J]. Acta Optica Sinca, 2018, 38(4): 0412001. (in Chinese). doi: 10.3788/AOS201838.0412001 [10] 李宁, 张云峰, 刘春香, 等. 1m口径红外测量系统的辐射定标[J]. 光学精密工程,2014,22(8):2054-2060. doi: 10.3788/OPE.20142208.2054LI N, ZHANG Y F, LIU CH X, et al. Calibration of 1m aperture infrared theodolite[J]. Optics and Precision Engineering, 2014, 22(8): 2054-2060. (in Chinese). doi: 10.3788/OPE.20142208.2054 [11] 罗茂捷, 周金梅, 傅景能, 等. 考虑积分时间变量的红外系统辐射响应定标[J]. 红外与激光工程,2013,42(1):36-40.LUO M J, ZHOU J M, FU J N, et al. Integration time as variable for radiometric calibration of infrared system[J]. Infrared and Laser Engineering, 2013, 42(1): 36-40. (in Chinese). [12] 余毅, 常松涛, 王旻, 等. 宽动态范围红外测量系统的快速非均匀性校正[J]. 光学精密工程,2015,23(7):1932-1938. doi: 10.3788/OPE.20152307.1932YU Y, CHANG S T, WANG M, et al. Fast non-uniformity correction for high dynamic infrared radiometric system[J]. Optics and Precision Engineering, 2015, 23(7): 1932-1938. (in Chinese). doi: 10.3788/OPE.20152307.1932 [13] 余毅, 王旻, 常松涛, 等. 根据环境温度进行红外成像系统漂移补偿[J]. 光学学报,2014,34(10):1004002. doi: 10.3788/AOS201434.1004002YU Y, WANG M, CHANG S T, et al. Drift compensation of infrared imaging system using ambient temperature[J]. Acta Optica Sinca, 2014, 34(10): 1004002. (in Chinese). doi: 10.3788/AOS201434.1004002 [14] TIAN Q J, CHANG S T, HE F Y, et al. Internal stray radiation measurement for cryogenic infrared imaging systems using a spherical mirror[J]. Applied Optics, 2017, 56(17): 4918-4925. doi: 10.1364/AO.56.004918