留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

使用激光多普勒测振技术无损检测果冻橙粒化病

刘智 赖庆荣 张天禹 李斌 宋云峰 陈楠

刘智, 赖庆荣, 张天禹, 李斌, 宋云峰, 陈楠. 使用激光多普勒测振技术无损检测果冻橙粒化病[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0115
引用本文: 刘智, 赖庆荣, 张天禹, 李斌, 宋云峰, 陈楠. 使用激光多普勒测振技术无损检测果冻橙粒化病[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0115
LIU Zhi, LAI Qing-rong, ZHANG Tian-yu, LI Bin, SONG Yun-feng, CHEN Nan. Non-destruction Detection of jelly orange granulation disease using laser Doppler vibrometry[J]. Chinese Optics. doi: 10.37188/CO.2024-0115
Citation: LIU Zhi, LAI Qing-rong, ZHANG Tian-yu, LI Bin, SONG Yun-feng, CHEN Nan. Non-destruction Detection of jelly orange granulation disease using laser Doppler vibrometry[J]. Chinese Optics. doi: 10.37188/CO.2024-0115

使用激光多普勒测振技术无损检测果冻橙粒化病

cstr: 32171.14.CO.2024-0115
基金项目: 国家重点研发计划(No. 2022YFD2001804,No. 2023YFD2001301);国家自然科学基金(No. 12304447)
详细信息
    作者简介:

    陈楠(1992—),男,江西光国人,博士,讲师,硕士生导师,2022年于中国科学院微电子研究所获得博士学位,主要从事光电智能传感方面的研究。E-mail:chennan@ecjtu.edu.cn

  • 中图分类号: TN247

Non-destruction Detection of jelly orange granulation disease using laser Doppler vibrometry

Funds: Supported by National Key Research and Development Program of China (No. 2022YFD2001804, No. 2023YFD2001301); National Natural Science Foundation of China (No. 12304447)
More Information
  • 摘要:

    粒化是柑橘类水果常见的一种内部病害,患有该病害的水果外部特征并不明显,难以从外观上直接识别出来。本文使用微型激光多普勒测振仪(micro-LDV)和共振喇叭搭建了一套声学振动实验装置,将其用于采集“爱媛38号”果冻橙的振动响应信号,然后将一维的振动响应信号转换为振动多域图像,并构建了一个Resnet-Transformer(ResT)网络,用于提取振动多域图像中的深层特征,以识别果冻橙粒化病。本文中,使用振动多域图像分别训练ResT、Resnet50和Vision Transformer(ViT)模型,并将ResT的性能与Resnet50和ViT进行比较;使用振动多域图像纹理特征或振动频谱特征训练偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)模型,并与ResT模型进行性能对比。结果表明,使用振动多域图像训练的ResT模型可以精准识别果冻橙粒化病并且检测准确率为98.61%,模型的F1为0.986、精确率为0.986、召回率为0.986。由上述结果可知,提出的方法可在简单、快速、低成本的前提下准确识别粒化果冻橙。

     

  • 图 1  正常和粒化的果冻橙横切面示例图

    Figure 1.  Example cross sections of normal and granulated jelly orange

    图 2  声振检测装置示意图

    Figure 2.  Schematic diagram of acoustic vibration detection device

    图 3  振动多域图像生成流程图。(a)经过快速傅立叶变换得到的果冻橙振动频谱曲线;(b)果冻橙振动响应信号;(c)振动多域图像生成模块,其包含对时频信号降维的卷积块、生成时频图像的Stockwell transform(ST)块、将时频域信号生成时域或频域图像的格拉姆角场(GAF)块以及归一化块;(d)振动ST时频域图像可视化结果,(e)振动GAF频域图像可视化结果;(f)振动GAF时域图像可视化结果

    Figure 3.  Flow chart of vibration multi-domain image generation. (a) Vibration spectrum curves of jelly orange obtained by fast Fourier transform, (b) vibration response signal of jelly orange; (c) vibration multi-domain image generation module with contains the convolution block for downscaling the time-frequency signal, the Stockwell transform (ST) block for generating the time-frequency image, the Gramian Angle Field (GAF) block for generating the time-domain or frequency-domain images from the time-frequency signal into, and the normalization block; (d) the result of visualizing the vibration ST time-frequency domain image; (e) the result of visualizing the vibration GAF frequency domain image; (f) the result of visualizing the vibration GAF time-domain image

    图 4  ResT模型结构示意图。ResT主要由多个基于CNN的Bottleneck块和基于Transformer的Swin Transformer块组成,分别提取振动多域图像的局部和全局的深层信息

    Figure 4.  Schematic diagram of ResT model structure. ResT mainly consists of multiple CNN-based Bottleneck blocks and Transformer-based Swin Transformer blocks, respectively, which extract local and global deep information from vibration multi-domain images

    图 5  果冻橙不同摆放位置的振动频谱

    Figure 5.  Vibration spectra of jelly orange at different placement positions

    图 6  717条振动频谱曲线的相关性分析

    Figure 6.  Correlation analysis of 717 vibration spectrum curves

    图 7  使用CARS算法从振动频谱中选择有效频率

    Figure 7.  Selection of effective frequencies from the vibration spectrum using the CARS algorithm

    图 8  预测集的结果混淆矩阵

    Figure 8.  Confusion matrix of the prediction set results

    图 9  ResT、Resnet50、ViT、VMIT-SVM、VST-SVM、VMIT-PLS-DA和VST-PLS-DA模型对果冻橙粒化病的识别性能比较

    Figure 9.  Comparison of the jelly orange granulation disease identification performances of ResT, Resnet50, ViT, VMIT-SVM, VST-SVM, VMIT-PLS-DA, and VST-PLS-DA models

    表  1  基于振动多域图像纹理特征的PLS-DA和SVM模型对果冻橙粒化病的分类结果

    Table  1.   jelly orange granulation disease classification results of PLS-DA and SVM models based on vibrational multi-domain image texture features

    模型 实际类别 预测类别 类别
    准确率 (%)
    总体
    准确率(%)
    正常 粒化
    SVM 正常 96 5 95.04% 95.13%
    粒化 2 41 95.35%
    PLS-DA 正常 93 8 92.08% 86.81%
    粒化 11 32 74.42%
    下载: 导出CSV

    表  2  基于振动频谱特征的PLS-DA和SVM模型对果冻橙粒化病的分类结果

    Table  2.   Jelly orange granulation disease classification results of PLS-DA and SVM models based on vibration spectral features

    模型 实际类别 预测类别 类别
    准确率
    总体
    准确率
    正常 粒化
    SVM 正常 96 5 95.04% 89.58%
    粒化 10 33 76.74%
    PLS-DA 正常 97 4 92.08% 90.97%
    粒化 9 34 74.42%
    下载: 导出CSV

    表  3  ResT、Resnet50和ViT的训练集和预测集结果

    Table  3.   Training and prediction set results for ResT, Resnet50 and ViT (%)

    模型 训练集准确率 预测集准确率
    正常 粒化 总体 正常 粒化 总体
    ResT 100.00 100.00 100.00 99.01 97.67 98.61
    Resnet50 100.00 100.00 100.00 98.02 97.67 97.92
    ViT 100.00 98.61 99.53 98.02 95.35 97.22
    下载: 导出CSV
  • [1] ZHENG Y J, TIAN SH J, XIE L J. Improving the identification accuracy of sugar orange suffering from granulation through diameter correction and stepwise variable selection[J]. Postharvest Biology and Technology, 2023, 200: 112313. doi: 10.1016/j.postharvbio.2023.112313
    [2] THEANJUMPOL P, WONGZEEWASAKUN K, MUENMANEE N, et al. Non-destructive identification and estimation of granulation in ‘Sai Num Pung’ tangerine fruit using near infrared spectroscopy and chemometrics[J]. Postharvest Biology and Technology, 2019, 153: 13-20. doi: 10.1016/j.postharvbio.2019.03.009
    [3] 陈玥瑶, 夏静静, 韦芸, 等. 近红外光谱法无损检测平谷产大桃品质方法研究[J]. 分析化学,2023,51(3):454-462.

    CHEN Y Y, XIA J J, WEI Y, et al. Research on nondestructive quality test of Pinggu peach by near-infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2023, 51(3): 454-462. (in Chinese).
    [4] 于水, 宦克为, 王磊, 等. 基于卷积神经网络的近红外光谱多组分定量分析模型研究[J]. 分析化学,2024,52(5):695-705.

    YU SH, HUAN K W, WANG L, et al. Multicomponent quantitative analysis model of near infrared spectroscopy based on convolution neural network[J]. Chinese Journal of Analytical Chemistry, 2024, 52(5): 695-705. (in Chinese).
    [5] JIE D F, WU SH, WANG P, et al. Research on Citrus grandis granulation determination based on hyperspectral imaging through deep learning[J]. Food Analytical Methods, 2021, 14(2): 280-289. doi: 10.1007/s12161-020-01873-6
    [6] NAYAK S L, SETHI S, SAHOO R N, et al. Potential of X-ray imaging to detect citrus granulation in different cultivars with progress in harvesting time[J]. Indian Journal of Experimental Biology, 2022, 60(4): 263-268.
    [7] KADOWAKI M, NAGASHIMA S, AKIMOTO H, et al. Detection of core rot symptom of Japanese pear (Pyrus pyrifolia cv. Kosui) by a nondestructive resonant method[J]. Journal of the Japanese Society for Horticultural Science, 2012, 81(4): 327-331. doi: 10.2503/jjshs1.81.327
    [8] ZHANG H, ZHA ZH H, KULASIRI D, et al. Detection of early core browning in pears based on statistical features in vibro-acoustic signals[J]. Food and Bioprocess Technology, 2021, 14(5): 887-897. doi: 10.1007/s11947-021-02613-2
    [9] ZHAO K, LI H, ZHA ZH H, et al. Detection of sub-healthy apples with moldy core using deep-shallow learning for vibro-acoustic multi-domain features[J]. Measurement: Food, 2022, 8: 100068. doi: 10.1016/j.meafoo.2022.100068
    [10] JIN CH, XIE L J, YING Y B. Eggshell crack detection based on the time-domain acoustic signal of rolling eggs on a step-plate[J]. Journal of Food Engineering, 2015, 153: 53-62. doi: 10.1016/j.jfoodeng.2014.12.011
    [11] SUN L, BI X K, LIN H, et al. On-line detection of eggshell crack based on acoustic resonance analysis[J]. Journal of Food Engineering, 2013, 116(1): 240-245. doi: 10.1016/j.jfoodeng.2012.11.001
    [12] WANG D CH, FENG ZH, JI SH Y, et al. Simultaneous prediction of peach firmness and weight using vibration spectra combined with one-dimensional convolutional neural network[J]. Computers and Electronics in Agriculture, 2022, 201: 107341. doi: 10.1016/j.compag.2022.107341
    [13] 崔笛, 张文, 应义斌. 激光多普勒测振技术在农产品品质检测中的应用[J]. 农业机械学报,2013,44(7):160-164. doi: 10.6041/j.issn.1000-1298.2013.07.027

    CUI D, ZHANG W, YING Y B. Applications of laser doppler vibrometer technology in nondestructive detection of agro-product quality[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7): 160-164. (in Chinese). doi: 10.6041/j.issn.1000-1298.2013.07.027
    [14] FATHIZADEH Z, ABOONAJMI M, BEYGI S R H. Nondestructive firmness prediction of apple fruit using acoustic vibration response[J]. Scientia Horticulturae, 2020, 262: 109073. doi: 10.1016/j.scienta.2019.109073
    [15] ABBASZADEH R, RAJABIPOUR A, DELSHAD M, et al. Application of vibration response for the nondestructive ripeness evaluation of watermelons[J]. Australian Journal of Crop Science, 2011, 5(7): 920-925.
    [16] AKAN A, CURA O K. Time-frequency signal processing: Today and future[J]. Digital Signal Processing, 2021, 119: 103216. doi: 10.1016/j.dsp.2021.103216
    [17] FU W L, JIANG X H, LI B L, et al. Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique[J]. Measurement Science and Technology, 2022, 34(4): 045005.
    [18] HUANG X F, LEI Q, XIE T L, et al. Deep transfer convolutional neural network and extreme learning machine for lung nodule diagnosis on CT images[J]. Knowledge-Based Systems, 2020, 204: 106230. doi: 10.1016/j.knosys.2020.106230
    [19] TANG X Y, XU Z B, WANG ZH G. A novel fault diagnosis method of rolling bearing based on integrated vision transformer model[J]. Sensors (Basel, Switzerland), 2022, 22(10): 3878. doi: 10.3390/s22103878
    [20] LIU H, LIU ZH Y, JIA W Q, et al. Tool wear estimation using a CNN-transformer model with semi-supervised learning[J]. Measurement Science and Technology, 2021, 32(12): 125010. doi: 10.1088/1361-6501/ac22ee
    [21] ALSHAMMARI H, GASMI K, BEN LTAIFA I, et al. Olive disease classification based on vision transformer and CNN models[J]. Computational Intelligence and Neuroscience, 2022, 2022: 3998193.
    [22] ZHAO K, ZHA Z H, LI H, et al. Early detection of moldy apple core based on time-frequency images of vibro-acoustic signals[J]. Postharvest Biology and Technology, 2021, 179: 111589. doi: 10.1016/j.postharvbio.2021.111589
    [23] ZHANG W, CUI D, YING Y B. The impulse response method for pear quality evaluation using a laser Doppler vibrometer[J]. Journal of Food Engineering, 2015, 159: 9-15. doi: 10.1016/j.jfoodeng.2015.03.013
    [24] DING CH Q, WANG D CH, FENG ZH, et al. Integration of vibration and optical techniques for watermelon firmness assessment[J]. Computers and Electronics in Agriculture, 2021, 187: 106307. doi: 10.1016/j.compag.2021.106307
    [25] 张弛, 王顺, 关向雨, 等. 激光多普勒测振技术应用的新进展[J]. 激光与光电子学进展,2022,59(19):1900006.

    ZHANG CH, WANG SH, GUAN X Y, et al. New progress in application of laser doppler vibration measurement technology[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1900006. (in Chinese).
    [26] WANG D CH, DING CH Q, FENG ZH, et al. Recent advances in portable devices for fruit firmness assessment[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(8): 1143-1154. doi: 10.1080/10408398.2021.1960477
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  41
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-21
  • 录用日期:  2024-09-12
  • 网络出版日期:  2024-09-25

目录

    /

    返回文章
    返回