留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进AO优化算法的折反射全景镜头畸变参数估计

张越 张宁 徐熙平

张越, 张宁, 徐熙平. 改进AO优化算法的折反射全景镜头畸变参数估计[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0118
引用本文: 张越, 张宁, 徐熙平. 改进AO优化算法的折反射全景镜头畸变参数估计[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0118
ZHANG Yue, ZHANG Ning, XU Xi-ping. Improved AO Optimization Algorithm for Distortion Parameter Estimation of Catadioptric omnidirectional Lens[J]. Chinese Optics. doi: 10.37188/CO.2024-0118
Citation: ZHANG Yue, ZHANG Ning, XU Xi-ping. Improved AO Optimization Algorithm for Distortion Parameter Estimation of Catadioptric omnidirectional Lens[J]. Chinese Optics. doi: 10.37188/CO.2024-0118

改进AO优化算法的折反射全景镜头畸变参数估计

基金项目: 吉林省科技厅重点研发项目(产业关键核心技术攻关项目)(No. 20210201029GX)
详细信息
    作者简介:

    张 越(1997—),男,吉林通化人,博士研究生,2019年于长春大学获得学士学位,2019年进入长春理工大学进行硕博连读,主要从事数字图像处理、群智能优化、视觉惯性导航方面的研究。E-mail:zycheney115@163.com

    张 宁(1979—),女,山东巨野人,工学博士,教授,博士生导师,2005年于中国矿业大学获得硕士学位,2013年于长春理工大学获得博士学位,主要从事光电检测与质量控制、图像目标模拟及识别方面的研究。E-mail:zhangning@cust.edu.cn

    徐熙平(1969—),男,吉林桦甸人,工学博士,教授,博士生导师,分别于1993年、1999年在长春光学精密机械学院获得学士、硕士学位;2004年在长春理工大学获得博士学位,主要从事光电检测与质量控制、图像目标模拟及识别方面的研究。E-mail:xxp@cust.edu.cn

  • 中图分类号: TP18;TP751

Improved AO Optimization Algorithm for Distortion Parameter Estimation of Catadioptric omnidirectional Lens

Funds: Supported by Jilin Provincial Science and Technology Department Key R&D Projects (Industrial Key Core Technology Research Projects) (No. 20210201029GX)
More Information
  • 摘要:

    目的:针对现有镜头畸变参数估计方法存在精度低、易陷入局部最优解的问题,提出了一种基于改进天鹰优化算法的折反射全景相机镜头畸变参数方法。方法:首先通过融合混沌映射、自适应调节策略和通讯交流策略,增强了天鹰优化算法的寻优能力,解决了其收敛速度慢且容易陷入局部最优解的问题。其次,通过空间中直线对应的畸变边缘和单参数除法模型推导并确定畸变参数分布范围,然后构建包含畸变参数的优化目标函数。最后采用改进的天鹰优化算法对优化目标函数寻优求得最佳畸变参数。结果:经过对标准图库图像和全景图像的校正结果分析,本文提出的方法估计的主点误差在0.5 pixel以内,径向畸变系数误差在2.5%以内,能够有效地估计镜头畸变参数并实现全景图像畸变校正。结论:提高了视觉导航系统在环境感知任务下的图像质量,在工程应用中具有潜在价值。

     

  • 图 1  折反射全景相机成像示意图

    Figure 1.  Catadioptric omnidirectional camera imaging schematic

    图 2  统一球面投影模型示意图

    Figure 2.  Unified Spherical Projection Model

    图 3  像点分布曲线

    Figure 3.  distribution curve of image point

    图 4  畸变参数求解流程图

    Figure 4.  Flowchart for solving distortion parameters

    图 5  基准函数图像和对比算法收敛曲线

    Figure 5.  Benchmark function image and comparison of algorithm convergence curves

    图 7  合成图像和其校正图像

    Figure 7.  Synthetic images and their corrected images

    图 6  畸变主点估计结果箱线图

    Figure 6.  Boxplot of the results of the distortion principal point estimation.

    图 8  噪声等级变化时的误差等级

    Figure 8.  Error level for sound level change

    图 9  两种折反射全景相机

    Figure 9.  Two types of catadioptric omnidirectional camera

    图 10  全景图像及其校正图像

    Figure 10.  Omnidirectional images and corrected images

    表  1  参数设定

    Table  1.   Parameter settings

    算法 参数设置
    GWO[26] a was linearly decreased from 2 to 0, rate=3
    WOA[27] α decreased from 2 to 0, b=1
    HHO[28] t=0
    ALO[29] I ratio=10ω, ω=[2,6]
    AO[18] S=1.5, r1 take a fixed index between 1 and 20,
    G2 decreased from 2 to 0
    下载: 导出CSV

    表  2  基准测试函数

    Table  2.   Benchmark function

    函数序号 函数名称 维度 范围 最优值
    F1 Sphere 30 [−100,100] 0
    F2 Schwefel 2.22 30 [−10,10] 0
    F3 Schwefel 1.2 30 [−100,100] 0
    F4 Schwefel 2.21 30 [−100,100] 0
    F5 Ackley 10 [−32,32] 0
    F6 Generalized Penalized 30 [−50,50] 0
    F7 Shekel's Foxholes 2 [−65.536,65.536] 1
    F8 Six-Hump Camel-Back 4 [−5,5] 1.0316
    F9 Goldstein-Price 2 [−2,2] 3
    F10 Shekel's Family 4 [0,1] 10.4028
    下载: 导出CSV

    表  3  不同算法对基准测试函数寻优结果

    Table  3.   Optimization results of different algorithms for benchmark functions

    函数 GWO WOA HHO ALO AO Improved AO
    F1 AVG 1.40×10−127 7.91×10−121 4.76×10−117 2.67×10−10 3.71×10−174 3.95×10−323
    STD 6.08×10−127 2.45×10−120 2.21×10−116 1.24×10−10 0.00 0.00
    Best 5.36×10−135 1.12×10−127 2.56×10−129 9.62×10−11 9.38×10−182 0.00
    F2 AVG 2.31×10−71 4.86×10−66 6.93×10−65 1.94×10−5 7.45×10−88 5.37×10−166
    STD 6.58×10−71 2.58×10−65 2.29×10−64 4.16×10−5 2.29×10−87 0.00
    Best 3.10×10−74 6.20×10−73 1.69×10−75 5.99×10−6 4.82×10−94 1.17×10−174
    F3 AVG 2.76×10−67 1.17×10−2 2.11×10−106 2.53×10−9 1.13×10−170 0.00
    STD 6.84×10−67 2.78×10−2 1.16×10−105 1.27×10−9 0.00 0.00
    Best 1.91×10−74 3.49×10−6 1.89×10−123 3.96×10−10 5.12×10−181 0.00
    F4 AVG 6.10×10−44 2.27×10−9 2.90×10−58 1.54×10−5 6.46×10−88 8.25×10−166
    STD 1.49×10−43 7.34×10−9 1.11×10−57 2.98×10−6 2.33×10−87 0.00
    Best 1.01×10−47 3.01×10−25 1.68×10−64 1.06×10−5 7.89×10−95 2.23×10−182
    F5 AVG 4.00×10−15 2.46×10−15 4.44×10−16 5.49×10−2 4.44×10−16 4.44×10−16
    STD 0.00 2.02×10−15 0.00 3.01×10−1 0.00 0.00
    Best 4.00×10−15 4.44×10−16 4.44×10−16 3.63×10−6 4.44×10−16 4.44×10−16
    F6 AVG 3.00 3.39×10−2 4.18×10−7 2.16×102 1.44×10−7 2.37×10−4
    STD 4.72×10−1 3.06×10−2 6.39×10−7 1.72×101 2.16×10−7 4.32×10−4
    Best 2.08 9.24×10−3 1.19×10−11 1.83×102 4.47×10−11 1.18×10−8
    F7 AVG 9.98×10−1 9.98×10−1 9.98×10−1 9.98×10−1 9.98×10−1 9.98×10−1
    STD 1.13×10−11 8.48×10−15 1.04×10−15 2.31×10−16 8.48×10−11 3.92×10−9
    Best 9.98×10−1 9.98×10−1 9.98×10−1 9.98×10−1 9.98×10−1 9.98×10−1
    F8 AVG −1.03 −1.03 −1.03 −1.03 −1.03 −1.03
    STD 1.01×10−9 7.23×10−15 4.25×10−16 8.87×10−15 5.38×10−6 2.44×10−4
    Best −1.03 −1.03 −1.03 −1.03 −1.03 −1.03
    F9 AVG 2.99 3.00 2.98 2.98 3.00 3.00
    STD 1.71×10−7 1.00×10−9 3.01×10−14 4.99×10−14 3.24×10−4 6.16×10−15
    Best 2.99 3.00 2.98 2.98 3.00 3.00
    F10 AVG −1.02×101 −1.04×101 −6.86 −9.35 −1.04×101 −1.04×101
    STD 9.70×10−1 8.75×10−7 2.55 2.15 5.73×10−5 3.22×10−2
    Best −1.04×101 −1.04×101 −1.04×101 −1.04×101 −1.04×101 −1.04×101
    下载: 导出CSV

    表  4  Wilcoxon秩和检验结果

    Table  4.   Wilcoxon rank sum test result

    对比算法单峰函数多峰函数固定维数多峰函数
    Improved AO vs. GWO6.39×10−42.86×10−21.19×10−2
    Improved AO vs. WOA2.48×10−46.43×10−27.80×10−3
    Improved AO vs. HHO1.55×10−36.26×10−23.97×10−3
    Improved AO vs. ALO1.00×10−52.86×10−27.80×10−3
    Improved AO vs. AO9.58×10−37.62×10−25.69×10−2
    下载: 导出CSV

    表  5  改进AO算法种群数量(N)的敏感性分析

    Table  5.   Sensitivity analysis of the Improved AO for the number of population members (N)

    函数 种群数量值
    100 200 300 400
    F1 0.00 0.00 0.00 0.00
    F2 5.13×10−167 1.16×10−167 7.23×10−171 3.09×10−176
    F3 0.00 0.00 0.00 0.00
    F4 3.87×10−181 3.87×10−187 5.83×10−195 0.00
    F5 4.44×10−16 4.44×10−16 3.45×10−18 1.12×10−21
    F6 1.49×10−5 1.35×10−6 2.58×10−6 2.33×10−7
    F7 9.98×10−1 9.98×10−1 9.98×10−1 9.98×10−1
    F8 −1.03 −1.03 −1.03 −1.03
    F9 3.02 3.02 3.01 3.01
    F10 −1.04×10−1 −1.04×10−1 −1.04×10−1 −1.04×10−1
    下载: 导出CSV

    表  6  改进AO算法迭代次数(T)的敏感性分析

    Table  6.   Sensitivity analysis of the Improved AO for the number of Iterations (T)

    函数 最大迭代次数
    200 400 600 800
    F1 1.68×10−225 0.00 0.00 0.00
    F2 5.67×10−108 3.64×10−145 1.52×10−167 6.26×10−170
    F3 2.28×10−217 0.00 0.00 0.00
    F4 5.91×10−109 5.61×10−159 5.85×10−165 2.99×10−168
    F5 4.44×10−16 4.44×10−16 3.25×10−17 1.93×10−17
    F6 3.93×10−5 1.79×10−5 1.45×10−6 9.95×10−7
    F7 9.98×10−1 9.98×10−1 9.98×10−1 9.98×10−1
    F8 −1.03 −1.03 −1.03 −1.03
    F9 3.01 3.01 3.01 3.01
    F10 −1.04×10−1 −1.04×10−1 −1.04×10−1 −1.04×10−1
    下载: 导出CSV

    表  7  径向畸变参数估计结果

    Table  7.   Radial distortion parameter estimation results

    序列 Ref [8] Ref [11] Ref [12] Ours
    (a) −1.03×10−5 −1.01×10−5 −1.01×10−5 −1.01×10−5
    (b) −1.02×10−6 −1.02×10−6 −1.02×10−6 −1.02×10−6
    (c) −1.05×10−7 −0.96×10−7 −0.97×10−7 −1.02×10−7
    (d) −1.07×10−8 −1.04×10−8 −1.04×10−8 −1.02×10−8
    (e) −1.02×10−6 −1.03×10−6 −1.01×10−6 −1.01×10−6
    (f) −1.02×10−5 −1.01×10−5 −1.01×10−5 −1.01×10−5
    下载: 导出CSV

    表  8  畸变参数估计误差

    Table  8.   Estimation error of the distortion parameter

    方法 D/(pixel) R(%)
    (a) (b) (c) (d) (e) (f)
    Ref [8] 1.2412 3.2 2.8 5.1 7.0 2.5 2.3
    Ref [11] 0.8430 1.5 2.8 4.6 4.3 3.0 1.5
    Ref [12] 0.6762 1.2 2.6 3.2 4.3 1.3 1.2
    Ours 0.4618 1.2 2.4 2.2 2.2 1.5 1.2
    下载: 导出CSV

    表  9  全景图像畸变参数估计结果

    Table  9.   Omnidirectional image distortion parameter estimation results

    序列 图像大小 畸变参数 畸变中心
    (a) $2\;048 \times 1\;536$ 2.2613×10−6 (1091.72,695.14)
    (b) $2\;048 \times 1\;536$ 2.1983×10−6 (1095.62,692.57)
    (c) $2\;048 \times 1\;536$ 2.3564×10−6 (1096.34,695.83)
    (d) $2\;048 \times 1\;536$ 2.2083×10−6 (1094.61,696.53)
    (e) $4\;352 \times 3\;264$ 3.2517×10−6 (517.86,382.15)
    (f) $4\;352 \times 3\;264$ 2.8476×10−6 (516.43,380.93)
    下载: 导出CSV
  • [1] GONZALEZ-AGUILERA D, GOMEZ-LAHOZ J, RODRÍGUEZ-GONZÁLVEZ P. An automatic approach for radial lens distortion correction from a single image[J]. IEEE Sensors Journal, 2011, 11(4): 956-965. doi: 10.1109/JSEN.2010.2076403
    [2] BORN M, WOLF E. Electromagnetic theory of propagation, interference and diffraction of light[J]. Principles of Optics, 1980, 6: 327-329. (查阅网上资料, 未找到本条文献信息, 请确认) .
    [3] XIANG H T, TIAN L. Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform[J]. Biosystems Engineering, 2011, 108(2): 104-113. doi: 10.1016/j.biosystemseng.2010.11.003
    [4] 黄军辉, 王昭, 薛琦, 等. 基于有理函数式镜头畸变模型的摄像机标定[J]. 中国激光,2014,41(5):0508001. doi: 10.3788/CJL201441.0508001

    HUANG J H, WANG ZH, XUE Q, et al. Calibration of camera with rational function lens distortion model[J]. Chinese Journal of Lasers, 2014, 41(5): 0508001. (in Chinese). doi: 10.3788/CJL201441.0508001
    [5] TSAI R. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE Journal on Robotics and Automation, 1987, 3(4): 323-344. doi: 10.1109/JRA.1987.1087109
    [6] ZHANG ZH Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. doi: 10.1109/34.888718
    [7] WU F L, WEI H, WANG X J. Correction of image radial distortion based on division model[J]. Optical Engineering, 2017, 56(1): 013108. doi: 10.1117/1.OE.56.1.013108
    [8] ASARI K V, KUMAR S, RADHAKRISHNAN D. A new approach for nonlinear distortion correction in endoscopic images based on least squares estimation[J]. IEEE Transactions on Medical Imaging, 1999, 18(4): 345-354. doi: 10.1109/42.768843
    [9] DEVERNAY F, FAUGERAS O. Straight lines have to be straight: automatic calibration and removal of distortion from scenes of structured enviroments[J]. Machine Vision and Applications, 2001, 13(1): 14-24. doi: 10.1007/PL00013269
    [10] ALVAREZ L, GÓMEZ L, SENDRA J R. An algebraic approach to lens distortion by line rectification[J]. Journal of Mathematical Imaging and Vision, 2009, 35(1): 36-50. doi: 10.1007/s10851-009-0153-2
    [11] 周前飞, 刘晶红. 航空变焦距镜头非线性畸变快速校正方法[J]. 光学学报,2015,35(4):0411001. doi: 10.3788/AOS201535.0411001

    ZHOU Q F, LIU J H. Rapid nonlinear distortion correction of aerial optical zoom lens system[J]. Acta Optica Sinica, 2015, 35(4): 0411001. (in Chinese). doi: 10.3788/AOS201535.0411001
    [12] 王平, 姚登银, 谯睿, 等. 基于双直线的镜头畸变参数估计方法[J]. 光学学报,2023,43(13):1315001. doi: 10.3788/AOS221724

    WANG P, YAO D Y, QIAO R, et al. Estimation method of lens distortion parameters based on two lines[J]. Acta Optica Sinica, 2023, 43(13): 1315001. (in Chinese). doi: 10.3788/AOS221724
    [13] MICUSIK B, PAJDLA T. Estimation of omnidirectional camera model from epipolar geometry[C]. Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2003.
    [14] 曹立波, 夏家豪, 廖家才, 等. 基于3D空间球面的车载全景快速生成方法[J]. 中国公路学报,2020,33(1):153-162,171. doi: 10.3969/j.issn.1001-7372.2020.01.016

    CAO L B, XIA J H, LIAO J C, et al. Fast generation methods of around view monitoring images for automobiles based on 3D space sphere[J]. China Journal of Highway and Transport, 2020, 33(1): 153-162,171. (in Chinese). doi: 10.3969/j.issn.1001-7372.2020.01.016
    [15] LIAO K, LIN CH Y, ZHAO Y, et al. OIDC-Net: omnidirectional image distortion correction via coarse-to-fine region attention[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(1): 222-231. doi: 10.1109/JSTSP.2019.2955017
    [16] FENG H, WANG W D, DENG J J, et al. SimFIR: a simple framework for fisheye image rectification with self-supervised representation learning[C]. Proceedings of 2023 IEEE/CVF International Conference on Computer Vision, IEEE, 2023: 12418-12427.
    [17] ARTIZZU C O, ALLIBERT G, DEMONCEAUX C. OMNI-CONV: generalization of the omnidirectional distortion-aware convolutions[J]. Journal of Imaging, 2023, 9(2): 29. doi: 10.3390/jimaging9020029
    [18] ABUALIGAH L, YOUSRI D, ABD ELAZIZ M, et al. Aquila optimizer: a novel meta-heuristic optimization algorithm[J]. Computers & Industrial Engineering, 2021, 157: 107250.
    [19] ZHANG Y, XU X P, ZHANG N, et al. Adaptive aquila optimizer combining niche thought with dispersed chaotic swarm[J]. Sensors, 2023, 23(2): 755. doi: 10.3390/s23020755
    [20] 林之博, 刘媛华. 一种分片混沌贪婪振荡退火TSP优化算法[J]. 计算机应用研究,2021,38(8):2359-2364.

    LIN ZH B, LIU Y H. Divided chaotic oscillatory annealing TSP optimization algorithm based on greedy strategy[J]. Application Research of Computers, 2021, 38(8): 2359-2364. (in Chinese).
    [21] 鲁英达, 张菁. 基于改进猎人猎物算法的VMD-KELM短期负荷预测[J]. 电气工程学报,2023,18(4):228-238.

    LU Y D, ZHANG J. VMD-KELM short-term load forecasting based on improved hunter-prey optimizer[J]. Journal of Electrical Engineering, 2023, 18(4): 228-238. (in Chinese).
    [22] 张越, 张宁, 徐熙平, 等. 融合结构光的折反射全景单目视觉测距[J]. 光学 精密工程,2024,32(4):490-503. doi: 10.37188/OPE.20243204.0490

    ZHANG Y, ZHANG N, XU X P, et al. Catadioptric omnidirectional monocular visual distance measurement method integrating structured light[J]. Optics and Precision Engineering, 2024, 32(4): 490-503. (in Chinese). doi: 10.37188/OPE.20243204.0490
    [23] MEI C, RIVES P. Single view point omnidirectional camera calibration from planar grids[C]. Proceedings 2007 IEEE International Conference on Robotics and Automation, IEEE, 2007: 3945-3950.
    [24] STRAND R, HAYMAN E. Correcting radial distortion by circle fitting[C]. Proceedings of the British Machine Vision Conference 2005, BMVC, 2005: 2564-2570.
    [25] WANG A Q, QIU T SH, SHAO L T. A simple method of radial distortion correction with centre of distortion estimation[J]. Journal of Mathematical Imaging and Vision, 2009, 35(3): 165-172. doi: 10.1007/s10851-009-0162-1
    [26] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007
    [27] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008
    [28] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872. doi: 10.1016/j.future.2019.02.028
    [29] MIRJALILI S. The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83: 80-98. doi: 10.1016/j.advengsoft.2015.01.010
    [30] BUKHARI F, DAILEY M N. Automatic radial distortion estimation from a single image[J]. Journal of Mathematical Imaging and Vision, 2013, 45(1): 31-45. doi: 10.1007/s10851-012-0342-2
  • 加载中
图(10) / 表(9)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  58
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-07-23
  • 录用日期:  2024-09-04
  • 网络出版日期:  2024-09-25

目录

    /

    返回文章
    返回