留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双光子跃迁的铷原子光学频率标准

张炯阳 翟浩 王骥 肖玉华 代虎 廉吉庆 杨世宇 陈江 刘志栋

张炯阳, 翟浩, 王骥, 肖玉华, 代虎, 廉吉庆, 杨世宇, 陈江, 刘志栋. 基于双光子跃迁的铷原子光学频率标准[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0120
引用本文: 张炯阳, 翟浩, 王骥, 肖玉华, 代虎, 廉吉庆, 杨世宇, 陈江, 刘志栋. 基于双光子跃迁的铷原子光学频率标准[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0120
ZHANG Jiong-yang, ZHAI Hao, WANG Ji, XIAO Yu-hua, DAI Hu, LIAN Ji-qing, YANG Shi-yu, CHEN Jiang, LIU Zhi-dong. Rubidium atomic optical frequency standard based on two-photon transition[J]. Chinese Optics. doi: 10.37188/CO.2024-0120
Citation: ZHANG Jiong-yang, ZHAI Hao, WANG Ji, XIAO Yu-hua, DAI Hu, LIAN Ji-qing, YANG Shi-yu, CHEN Jiang, LIU Zhi-dong. Rubidium atomic optical frequency standard based on two-photon transition[J]. Chinese Optics. doi: 10.37188/CO.2024-0120

基于双光子跃迁的铷原子光学频率标准

基金项目: 军科委创新特区项目(No. 23-XXXX-015);中国航天科技集团有限公司钱学森青年基金项目;甘肃省领军人才计划资助项目(No. 2023-LJRC-366);国家自然科学基金项目(No. U2341247)
详细信息
    作者简介:

    张炯阳(1994—),男,甘肃酒泉人,博士,工程师,2022年于华中科技大学获得博士学位。主要从事小型化光学原子钟、冷原子精密测量等方面的研究。E-mail:zhangjy529@126.com

    翟 浩(1971—),男,甘肃静宁人,博士,研究员,硕士生导师,1999年于中国空间技术研究院获得硕士学位,2020年于北京航天航空大学获得博士学位。主要从事原子钟与时空基准技术研究。E-mail:2692244353@qq.com

    王 骥(1977—),男,甘肃白银人,博士,研究员,硕士生导师,2005年于西安交通大学获得博士学位。主要从事原子钟与时频技术研究。E-mail: 20138295@qq.com

  • 中图分类号: TM935.11

Rubidium atomic optical frequency standard based on two-photon transition

Funds: Supported by The Project of National Defence Innovation Zone of Science and Technology Commission of CMC, China (No. 23-XXXX-015);The Qian Xuesen Youth Innovation Fund of China Aerospace Science and Technology Corporation;The Project of Leading Talents of Gansu Province (No. 2023-LJRC-366);The National Natural Science Foundation of China (No. U2341247)
More Information
  • 摘要:

    精确计时对国民经济发展、科学技术进步以及国防军事安全等领域至关重要。基于双光子跃迁的光学频率标准因其稳定度高、复现性好和易于小型化等显著优势,有望成为实际可用的小型化光频标。本文简要阐述了双光子跃迁的基本原理,介绍了国内外基于双光子跃迁的铷原子光频标的研究现状和进展,最后分析总结得出未来基于双光子跃迁的铷原子光学频率标准的发展趋势为系统小型化、性能指标提升以及集成应用与工程化。

     

  • 图 1  (a)铷原子双光子跃迁的能级图及(b)铷原子双光子跃迁能级图[68]

    Figure 1.  (a) Energy level diagram of two-photon transition of rubidium atom and (b) Energy level diagram of two-photon transition of rubidium atom[68]

    图 2  双光子跃迁系统示意图

    Figure 2.  Schematic diagram of two-photon transition system

    图 3  ATA、AFRL等联合团队报道的(a)双光子跃迁光钟方案与(b)频率稳定度结果[55]

    Figure 3.  ATA, AFRL and other joint teams reported (a) Two-photon transition optical clock scheme and (b) results of frequency stability.

    图 4  小型化光学原子钟。(a)和(b)来自美国NIST[80,82],(c)来自加拿大多伦多大学[83]

    Figure 4.  Miniaturized optical atomic clock. (a) and (b) from NIST, USA[80,82], ( c ) from University of Toronto, Canada[83].

    表  1  国内外代表性双光子跃迁光频标研究现状

    Table  1.   Research status of representative optical frequency atomic clocks based on two-photon transition at home and abroad

    国家 研究机构 年份 秒稳 (×10-13) 长稳 (×10-15) 文献
    法国LKB等1998310@1000 s[54]
    美国AFRL等201844@10000 s[55]
    NIST201944220@1000 s[82]
    20211.85@1600 s[81]
    贝塞尔大学202253@106s[95]
    加拿大拉瓦尔大学20022.558@100 s[74]
    英国NPL20059.3120@100 s[75]
    埃及国家标准研究院201640680@1000 s[96]
    澳大利亚阿德莱德大学等20231.53@8000 s[85]
    中国北京大学20191440@2000 s[88]
    中科院上海光机所202315290@500 s[57]
    中科院武汉精测院2024470@100 s[89]
    下载: 导出CSV
  • [1] BOTHWELL T, KENNEDY C J, AEPPLI A, et al. Resolving the gravitational redshift across a millimetre-scale atomic sample[J]. Nature, 2022, 602(7897): 420-424. doi: 10.1038/s41586-021-04349-7
    [2] ASHBY N, HEAVNER T P, JEFFERTS S R, et al. Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers[J]. Physical Review Letters, 2007, 98(7): 070802. doi: 10.1103/PhysRevLett.98.070802
    [3] 孙和平, 杨元喜, 叶朝辉, 等. 精密(量子)测量时代下时空基准研究中的关键科学问题和核心技术[J]. 中国科学基金,2024,38(1):172-181.

    SUN H P, YANG Y X, YE ZH H, et al. Key scientific frontiers and core technologies in space-time reference research in the era of precision (quantum) measurement[J]. Bulletin of National Natural Science Foundation of China, 2024, 38(1): 172-181. (in Chinese).
    [4] 杨元喜, 任夏, 贾小林, 等. 以北斗系统为核心的国家安全PNT体系发展趋势[J]. 中国科学: 地球科学,2023,66(5):929-938.

    YANG Y X, REN X, JIA X L, et al. Development trends of the national secure PNT system based on BDS[J]. Science China Earth Sciences, 2023, 66(5): 929-938.
    [5] 罗俊, 艾凌皓, 艾艳丽, 等. 天琴计划简介[J]. 中山大学学报(自然科学版),2021,60(1-2):1-19.

    LUO J, AI L H, AI Y L, et al. A brief introduction to the TianQin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1-2): 1-19. (in Chinese).
    [6] 谢军, 郑晋军, 张弓, 等. 卫星导航系统发展现状与未来趋势[J]. 前瞻科技,2022,1(1):94-111. doi: 10.3981/j.issn.2097-0781.2022.01.009

    XIE J, ZHENG J J, ZHANG G, et al. Development status and future trend of satellite navigation systems[J]. Science and Technology Foresight, 2022, 1(1): 94-111. (in Chinese). doi: 10.3981/j.issn.2097-0781.2022.01.009
    [7] 翟浩, 廉吉庆. 原子钟性能对卫星导航系统定位精度的影响分析[J]. 导航定位与授时,2021,8(5):118-123.

    ZHAI H, LIAN J Q. Analysis of the influence of atomic clock performance on positioning accuracy of satellite navigation systems[J]. Navigation Positioning and Timing, 2021, 8(5): 118-123. (in Chinese).
    [8] 曹远洪, 杜润昌, 赵杏文, 等. 原子钟技术在电力系统应用——中国电力系统时间同步体系建设方案初探[C]. 第十二届中国卫星导航年会论文集——S05空间基准与精密定位, 中国卫星导航系统管理办公室学术交流中心, 2021: 8.

    CAO Y H, DU R CH, ZHAO X W, et al. Application of atomic clock technology in grid system —preliminary study on construction of time synchronization system in China grid[C]. The 12th China Satellite Navigation Annual Conference, China Satellite Navigation Office Academic Exchange Center, 2021: 8. (in Chinese) (查阅网上资料, 未找到标黄信息, 请确认) .
    [9] 王勇征, 田映东, 彭刚, 等. 铯原子钟在通信网中的应用研究[J]. 数码设计,2021,10(1):59.

    WANG Y ZH, TIAN Y D, PENG G, et al. Research on the application of cesium atomic clock in communication network[J]. Digital Insige, 2021, 10(1): 59. (in Chinese) (查阅网上资料, 未找到标黄信息, 请确认) .
    [10] SCHULDT T, DÖRINGSHOFF K, OSWALD M, et al. Absolute laser frequency stabilization for LISA[J]. International Journal of Modern Physics D, 2019, 28(12): 1845002. doi: 10.1142/S0218271818450025
    [11] CUI J Q, MING G, WANG F, et al. Realization of a rubidium atomic frequency standard with short-term stability in 10−14 τ−1/2 level[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1500507.
    [12] 崔敬忠, 杨坦, 张玲, 等. 真空环境下铷钟性能的研究[J]. 真空与低温,2016,22(5):271-274,295. doi: 10.3969/j.issn.1006-7086.2016.05.005

    CUI J ZH, YANG T, ZHANG L, et al. Study of the performance of rubidium frquency standard in vacuum environment[J]. Vacuum and Cryogenics, 2016, 22(5): 271-274,295. (in Chinese). doi: 10.3969/j.issn.1006-7086.2016.05.005
    [13] JEANMAIRE A, ROCHAT P, EMMA F. Rubidium atomic clock for Galileo[C]. Proceedings of the 31th Annual Precise Time and Time Interval Systems and Applications Meeting, 1999: 627-636. (查阅网上资料, 未找到出版社信息, 请补充) .
    [14] 陈江, 刘志栋, 王骥, 等. 一种超小型磁选态铯原子钟[J]. 时间频率学报,2022,45(1):9-14.

    CHEN J, LIU ZH D, WANG J, et al. Small compact magnetically state-selected cesium atomic clock[J]. Journal of Time and Frequency, 2022, 45(1): 9-14. (in Chinese).
    [15] 赵杏文, 韦强, 李东旭, 等. 激光抽运小型铯原子钟研制进展[J]. 时间频率学报,2022,45(1):1-8.

    ZHAO X W, WEI Q, LI D X, et al. Progress on optically pumped cesium beam frequency standard[J]. Journal of Time and Frequency, 2022, 45(1): 1-8. (in Chinese).
    [16] CHADSEY H, KUBIK A. Maintenance of HP 5071A primary frequency standards at USNO[C]. Proceedings of Precise Time Time Interval Syst. Appl. Meeting, 1997: 49-59. (查阅网上资料, 未能确认标黄信息, 未找到出版社信息, 请核对并补充) .
    [17] 王骥, 黄良育, 陈江, 等. 磁选态铯原子频率标准技术研制进展[J]. 时间频率学报,2022,45(1):15-25.

    WANG J, HUANG L Y, CHEN J, et al. Progress on cesium atomic frequency standard with magnetic state-selection technology[J]. Journal of Time and Frequency, 2022, 45(1): 15-25. (in Chinese).
    [18] 何克亮, 张为群, 林传富. 主动型氢原子钟的研究进展[J]. 天文学进展,2017,35(3):345-366. doi: 10.3969/j.issn.1000-8349.2017.03.05

    HE K L, ZHANG W Q, LIN CH F. Progresses in researches of active hydrogen atomic clock[J]. Progress in Astronomy, 2017, 35(3): 345-366. (in Chinese). doi: 10.3969/j.issn.1000-8349.2017.03.05
    [19] POLYAKOV V, TIMOFEEV Y, DEMIDOV N. Frequency stability improvement of an active hydrogen maser with a single-state selection system[C]. 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, IEEE, 2021: 1-4.
    [20] 郑贺斐, 李晶, 冯克明, 等. 被动型氢原子钟单频调制的鉴频特性研究[J]. 中国激光,2018,45(3):0311001. doi: 10.3788/CJL201845.0311001

    ZHENG H F, LI J, FENG K M, et al. Frequency discrimination for passive hydrogen maser based on single frequency modulation[J]. Chinese Journal of Lasers, 2018, 45(3): 0311001. (in Chinese). doi: 10.3788/CJL201845.0311001
    [21] WEYERS S, GERGINOV V, KAZDA M, et al. Advances in the accuracy, stability, and reliability of the PTB primary fountain clocks[J]. Metrologia, 2018, 55(6): 789-805. doi: 10.1088/1681-7575/aae008
    [22] GUENA J, ABGRALL M, ROVERA D, et al. Progress in atomic fountains at LNE-SYRTE[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(3): 391-410. doi: 10.1109/TUFFC.2012.2208
    [23] PELLE B, ARCHAMBAULT L, DESRUELLE B, et al. Cold-atom-based commercial microwave clocks at 1× 10−15 relative instability over more than one month[C]. 2022 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, IEEE, 2022: 1-4.
    [24] 陈伟亮, 刘昆, 郑发松, 等. 长期稳定度2.6×10−16的工程化高可靠铷原子喷泉钟[J]. 仪器仪表学报,2024,45(2):79-86.

    CHEN W L, LIU K, ZHENG F S, et al. Enineering highly reliable Rb fountain clock with a long-term instability of 2.6×10−16[J]. Chinese Journal of Scientific Instrument, 2024, 45(2): 79-86. (in Chinese).
    [25] 李慧, 杜远博, 刘洪力, 等. 用于本地时标系统的铯原子喷泉钟研制[J]. 华中科技大学学报(自然科学版),2022,50(9):23-29.

    LI H, DU Y B, LIU H L, et al. Development of cesium fountain clock as local precision time and frequency standard[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2022, 50(9): 23-29. (in Chinese).
    [26] LIU L, LU D SH, CHEN W B, et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms[J]. Nature Communications, 2018, 9(1): 2760. doi: 10.1038/s41467-018-05219-z
    [27] REN W, LI T, QU Q ZH, et al. Development of a space cold atom clock[J]. National Science Review, 2020, 7(12): 1828-1836. doi: 10.1093/nsr/nwaa215
    [28] LIU P, MENG Y L, WAN J Y, et al. Scheme for a compact cold-atom clock based on diffuse laser cooling in a cylindrical cavity[J]. Physical Review A, 2015, 92(6): 062101. doi: 10.1103/PhysRevA.92.062101
    [29] MENG Y L, JIANG X J, WU J, et al. Satellite-borne atomic clock based on diffuse laser-cooled atoms[J]. Frontiers in Physics, 2022, 10: 985586. doi: 10.3389/fphy.2022.985586
    [30] ESNAULT F X, ROSSETTO N, HOLLEVILLE D, et al. HORACE: a compact cold atom clock for Galileo[J]. Advances in Space Research, 2011, 47(5): 854-858. doi: 10.1016/j.asr.2010.12.012
    [31] BURT E A, PRESTAGE J D, TJOELKER R L, et al. Demonstration of a trapped-ion atomic clock in space[J]. Nature, 2021, 595(7865): 43-47. doi: 10.1038/s41586-021-03571-7
    [32] 曹士英, 房芳. 秒定义变革及我国时间频率基准的发展和应对[J]. 信息通信技术与政策,2022,48(7):2-8. doi: 10.12267/j.issn.2096-5931.2022.07.001

    CAO SH Y, FANG F. Redefinition of unit of time and research progress of primary frequency standard in NIM[J]. Information and Communications Technology and Policy, 2022, 48(7): 2-8. (in Chinese). doi: 10.12267/j.issn.2096-5931.2022.07.001
    [33] BOTHWELL T, KEDAR D, OELKER E, et al. JILA SrI optical lattice clock with uncertainty of 2.0×10−18[J]. Metrologia, 2019, 56(6): 065004. doi: 10.1088/1681-7575/ab4089
    [34] MCGREW W F, ZHANG X, FASANO R J, et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 2018, 564(7734): 87-90. doi: 10.1038/s41586-018-0738-2
    [35] LI J, CUI X Y, JIA ZH P, et al. A strontium lattice clock with both stability and uncertainty below 5×10−18[J]. Metrologia, 2024, 61(1): 015006. doi: 10.1088/1681-7575/ad1a4c
    [36] BREWER S M, CHEN J S, HANKIN A M, et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18[J]. Physical Review Letters, 2019, 123(3): 033201. doi: 10.1103/PhysRevLett.123.033201
    [37] DIDDAMS S A, JONES D J, YE J, et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Physical Review Letters, 2000, 84(22): 5102-5105. doi: 10.1103/PhysRevLett.84.5102
    [38] DEL’HAYE P, SCHLIESSER A, ARCIZET O, et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 2007, 450(7173): 1214-1217. doi: 10.1038/nature06401
    [39] GIORGI G, SCHMIDT T D, TRAINOTTI C, et al. Advanced technologies for satellite navigation and geodesy[J]. Advances in Space Research, 2019, 64(6): 1256-1273. doi: 10.1016/j.asr.2019.06.010
    [40] POLI N, SCHIOPPO M, VOGT S, et al. A transportable strontium optical lattice clock[J]. Applied Physics B, 2014, 117(4): 1107-1116. doi: 10.1007/s00340-014-5932-9
    [41] KONG D H, WANG ZH H, GUO F, et al. A transportable optical lattice clock at the national time service center[J]. Chinese Physics B, 2020, 29(7): 070602. doi: 10.1088/1674-1056/ab9290
    [42] ZHANG H Q, HUANG Y, ZHANG B L, et al. Absolute frequency measurements with a robust, transportable 40Ca+ optical clock[J]. Metrologia, 2023, 60(3): 035004. doi: 10.1088/1681-7575/acd05d
    [43] 任洁, 谭巍, 郭峰, 等. 空间锶原子光钟磁场分析及主动补偿系统[J]. 光学 精密工程,2022,30(11):1337-1343. doi: 10.37188/OPE.20223011.1337

    REN J, TAN W, GUO F, et al. Magnetic field analysis and active compensation system for strontium optical lattice clock in space[J]. Optics and Precision Engineering, 2022, 30(11): 1337-1343. (in Chinese). doi: 10.37188/OPE.20223011.1337
    [44] DÖRINGSHOFF K, GUTSCH F B, SCHKOLNIK V, et al. Iodine frequency reference on a sounding rocket[J]. Physical Review Applied, 2019, 11(5): 054068. doi: 10.1103/PhysRevApplied.11.054068
    [45] ZHANG ZH Q, WANG ZH Y, LIU H L, et al. An ultra-stable laser based on molecular iodine with a short-term instability of 3.3×10−15 for space based gravity missions[J]. Classical and Quantum Gravity, 2023, 40(22): 225001. doi: 10.1088/1361-6382/acfec2
    [46] ZANG E J, CAO J P, LI Y, et al. Realization of four-pass I2 absorption cell in 532-nm optical frequency standard[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(2): 673-676. doi: 10.1109/TIM.2007.890816
    [47] DÖRINGSHOFF K, SCHULDT T, KOVALCHUK E V, et al. A flight-like absolute optical frequency reference based on iodine for laser systems at 1064 nm[J]. Applied Physics B, 2017, 123(6): 183. doi: 10.1007/s00340-017-6756-1
    [48] LEE S, MOON G, PARK S E, et al. Laser frequency stabilization in the 10−14 range via optimized modulation transfer spectroscopy on the 87 Rb D2 line[J]. Optics Letters, 2023, 48(4): 1020-1023. doi: 10.1364/OL.480178
    [49] ZHANG SH N, ZHANG X G, CUI J ZH, et al. Compact Rb optical frequency standard with 10−15 stability[J]. Review of Scientific Instruments, 2017, 88(10): 103106. doi: 10.1063/1.5006962
    [50] QI X H, CHEN W L, LIN Y, et al. Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique[J]. Chinese Physics Letters, 2009, 26(4): 044205. doi: 10.1088/0256-307X/26/4/044205
    [51] KERSTEN P, MENSING F, STERR U, et al. A transportable optical calcium frequency standardDedicated to J. Helmcke on the occasion of his 60th birthday[J]. Applied Physics B, 1999, 68(1): 27-38. doi: 10.1007/s003400050582
    [52] SHANG H S, ZHANG X G, ZHANG SH N, et al. Miniaturized calcium beam optical frequency standard using fully-sealed vacuum tube with 10−15 instability[J]. Optics Express, 2017, 25(24): 30459-30467. doi: 10.1364/OE.25.030459
    [53] QUINN T J. Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)[J]. Metrologia, 2003, 40(2): 103-133. doi: 10.1088/0026-1394/40/2/316
    [54] HILICO L, FELDER R, TOUAHRI D, et al. Metrological features of the rubidium two-photon standards of the BNM-LPTF and Kastler Brossel Laboratories[J]. The European Physical Journal: Applied Physics, 1998, 4(2): 219-225. doi: 10.1051/epjap:1998263
    [55] MARTIN K W, PHELPS G, LEMKE N D, et al. Compact optical atomic clock based on a two-photon transition in rubidium[J]. Physical Review Applied, 2018, 9(1): 014019. doi: 10.1103/PhysRevApplied.9.014019
    [56] JANA S, SAHOO B K, SHARMA A. Progress towards the development of a portable all-optical atomic clock based on a two-photon transition in warm atomic vapor[C]. 2022 URSI Regional Conference on Radio Science, IEEE, 2022: 1-4.
    [57] 孟一鸣, 项静峰, 徐斌, 等. 铷87原子双光子跃迁光谱稳频特性研究[J]. 中国激光,2023,50(23):2301013.

    MENG Y M, XIANG J F, XU B, et al. Frequency stabilization characteristics of 87Rb two-photon transition spectrum[J]. Chinese Journal of Lasers, 2023, 50(23): 2301013. (in Chinese).
    [58] CHU C H, SHIH Y J, CHANG P CH, et al. Frequency of the unmodulated 778-nm rubidium clock measured in high vacuum[C]. 2023 Conference on Lasers and Electro-Optics, IEEE, 2023: 1-2.
    [59] NEZ F, PLIMMER M D, BOURZEIX S, et al. First pure frequency measurement of an optical transition in atomic hydrogen: better determination of the Rydberg constant[J]. Europhysics Letters, 1993, 24(8): 635-640. doi: 10.1209/0295-5075/24/8/003
    [60] SCHWOB C, JOZEFOWSKI L, DE BEAUVOIR B, et al. Optical frequency measurement of the 2S-12D transitions in hydrogen and deuterium: rydberg constant and lamb shift determinations[J]. Physical Review Letters, 1999, 82(25): 4960-4963. doi: 10.1103/PhysRevLett.82.4960
    [61] KIRAN KUMAR P V, SURYANARAYANA M V. Precision two-photon spectroscopy of alkali elements[J]. Pramana, 2014, 83(2): 189-219. doi: 10.1007/s12043-014-0789-3
    [62] JADUSZLIWER B, CAMPARO J. Past, present and future of atomic clocks for GNSS[J]. GPS Solutions, 2021, 25(1): 27. doi: 10.1007/s10291-020-01059-x
    [63] VASILENKO L S, CHEBOTAEV V P, SHISHAEV A V. Line shape of two-photon absorption in a standing-wave field in a gas[J]. Journal of Experimental and Theoretical Physics Letters, 1970, 12(3): 113-116.
    [64] 冯晨, 吕杭哲, 段剑, 等. 基于双光子光谱的光学频率标准[J]. 计测技术,2023,43(4):103-112. doi: 10.11823/j.issn.1674-5795.2023.04.08

    FENG CH, LYU H ZH, DUAN J, et al. Optical frequency standard based on two-photon spectroscopy[J]. Metrology & Measurement Technology, 2023, 43(4): 103-112. (in Chinese). doi: 10.11823/j.issn.1674-5795.2023.04.08
    [65] DEMTRÖDER W. Laser Spectroscopy 2: Experimental Techniques[M]. Berlin: Springer, 2008.
    [66] BIRABEN F, CAGNAC B, GRYNBERG G. Experimental evidence of two-photon transition without Doppler broadening[J]. Physical Review Letters, 1974, 32(12): 643-645. doi: 10.1103/PhysRevLett.32.643
    [67] SHENG D, PÉREZ GALVÁN A, OROZCO L A. Lifetime measurements of the 5d states of rubidium[J]. Physical Review A, 2008, 78(6): 062506. doi: 10.1103/PhysRevA.78.062506
    [68] 范鹏瑞, 李一鸿, 李少华, 等. 利用铷原子双光子跃迁产生420nm蓝光的实验研究[J]. 量子光学学报,2017,23(2):144-150.

    FAN P R, LI Y H, LI SH H, et al. Experimental investigation on the 420 nm blue light generated by two-photon transition of Rb[J]. Journal of Quantum Optics, 2017, 23(2): 144-150. (in Chinese).
    [69] LEVENSON M D, BLOEMBERGEN N. Observation of two-photon absorption without doppler broadening on the 3S-5S transition in sodium vapor[J]. Physical Review Letters, 1974, 32(12): 645-648. doi: 10.1103/PhysRevLett.32.645
    [70] KATO Y, STOICHEFF B P. Two-photon absorption to highly excited D states of Rb atoms[J]. Journal of the Optical Society of America, 1976, 66(5): 490-492. doi: 10.1364/JOSA.66.000490
    [71] NEZ F, BIRABEN F, FELDER R, et al. Optical frequency determination of the hyperfine components of the 5S12-5D32 two-photon transitions in rubidium[J]. Optics Communications, 1993, 102(5-6): 432-438. doi: 10.1016/0030-4018(93)90417-4
    [72] FELDER R, TOUAHRI D, ACEF O, et al. Performance of a GaAlAs laser diode stabilized on a hyperfine component of two-photon transitions in rubidium at 778 nm[J]. Proceedings of SPIE, 1995, 2378: 52-57. doi: 10.1117/12.208244
    [73] SHUKLA V, NATH S K, NAIK V, et al. Studies on rubidium 5S-5d two-photon absorption[J]. Journal of Modern Optics, 2021, 68(6): 311-321. doi: 10.1080/09500340.2021.1894361
    [74] POULIN M, LATRASSE C, TOUAHRI D, et al. Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms[J]. Optics Communications, 2002, 207(1-6): 233-242. doi: 10.1016/S0030-4018(02)01354-8
    [75] EDWARDS C S, BARWOOD G P, MARGOLIS H S, et al. Development and absolute frequency measurement of a pair of 778 nm two-photon rubidium standards[J]. Metrologia, 2005, 42(5): 464-467. doi: 10.1088/0026-1394/42/5/018
    [76] RIEHLE F. Frequency Standards: Basics and Applications[M]. Weinheim: Wiley-VCH, 2004.
    [77] ZHU M, STANDRIDGE R W. Optical frequency standard for optical fiber communication based on the Rb 5s→ 5d two-photon transition[J]. Optics Letters, 1997, 22(10): 730-732. doi: 10.1364/OL.22.000730
    [78] AWAJI Y, NAKAGAWA K, DE LABACHELERIE M, et al. Optical frequency measurement of the H12C14N Lamb-dip-stabilized 1.5-μm diode laser[J]. Optics Letters, 1995, 20(19): 2024-2026. doi: 10.1364/OL.20.002024
    [79] TERRA O, HUSSEIN H. An ultra-stable optical frequency standard for telecommunication purposes based upon the 5S1/2→5D5/2 two-photon transition in Rubidium[J]. Applied Physics B, 2016, 122(2): 27. doi: 10.1007/s00340-015-6309-4
    [80] MAURICE V, NEWMAN Z L, DICKERSON S, et al. Miniaturized optical frequency reference for next-generation portable optical clocks[J]. Optics Express, 2020, 28(17): 24708-24720. doi: 10.1364/OE.396296
    [81] NEWMAN Z L, MAURICE V, FREDRICK C, et al. High-performance, compact optical standard[J]. Optics Letters, 2021, 46(18): 4702-4705. doi: 10.1364/OL.435603
    [82] NEWMAN Z L, MAURICE V, DRAKE T, et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 2019, 6(5): 680-685. doi: 10.1364/OPTICA.6.000680
    [83] COTE K, JACKSON S, ZAZO R, et al. The stratospheric optical rubidium clock experiment[C]. 70th International Astronautical Congress, IAF, 2019.
    [84] PERRELLA C, LIGHT P S, ANSTIE J D, et al. Dichroic two-photon rubidium frequency standard[J]. Physical Review Applied, 2019, 12(5): 054063. doi: 10.1103/PhysRevApplied.12.054063
    [85] LOCKE C R, NG S, SCARABEL J, et al. Portable optical atomic clock based on a dichroic two-photon transition in rubidium[C]. 2023 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, IEEE, 2023: 1-2.
    [86] ZHANG S Y, WU J T, ZHANG Y L, et al. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms[J]. Scientific Reports, 2015, 5: 15114. doi: 10.1038/srep15114
    [87] WU J T, HOU D, QIN ZH Y, et al. Observation of Rb two-photon absorption directly excited by an erbium-fiber-laser-based optical frequency comb via spectral control[J]. Physical Review A, 2014, 89(4): 041402(R).
    [88] LENG J X, XU H, LU H Y, et al. Optical communication frequency standard using a fiber laser to excite cold rubidium two-photon transition[J]. Journal of the Optical Society of America B, 2019, 36(5): 1183-1188. doi: 10.1364/JOSAB.36.001183
    [89] LI D, LIU K Q, WANG P F, et al. Dual-interrogation method for suppressing light shift in Rb 778 nm two-photon transition optical frequency standard[J]. Optics Express, 2024, 32(2): 2766-2773. doi: 10.1364/OE.512205
    [90] 王铿淇, 郭进先. 基于铷原子双光子跃迁的原子谱线展宽机制教学演示[J]. 物理与工程,2023,33(2):119-125. doi: 10.3969/j.issn.1009-7104.2023.02.019

    WANG K Q, GUO J X. Teaching demonstration of spectrum broadening in two-photo transition of RB[J]. Physics and Engineering, 2023, 33(2): 119-125. (in Chinese). doi: 10.3969/j.issn.1009-7104.2023.02.019
    [91] ZHANG Y CH, WU J ZH, LI Y Q, et al. A direct frequency comb for two-photon transition spectroscopy in a cesium vapor[J]. Chinese Physics B, 2012, 21(11): 113701. doi: 10.1088/1674-1056/21/11/113701
    [92] ZHANG Y CH, FAN P R, YUAN J P, et al. High-resolution rb two-photon transition spectroscopy by a femtosecond frequency comb via pulses control[J]. Chinese Physics Letters, 2016, 33(11): 113201. doi: 10.1088/0256-307X/33/11/113201
    [93] https://afresearchlab.com/technology/nts-3. (查阅网上资料,请补充完整信息) .
    [94] LEMKE N D, PHELPS G, BURKE J H, et al. The optical rubidium atomic frequency standard at AFRL[C]. 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, IEEE, 2017: 466-467.
    [95] LEMKE N D, MARTIN K W, BEARD R, et al. Measurement of optical rubidium clock frequency spanning 65 days[J]. Sensors, 2022, 22(5): 1982. doi: 10.3390/s22051982
    [96] TERRA O, HUSSEIN H. An ultra-stable optical frequency standard for telecommunication purposes based upon the 5S1/2→5D5/2 two-photon transition in rubidium[J]. Applied Physics B, 2016, 122(2): 27. (查阅网上资料, 本条文献和第79条文献重复, 请核对) .
    [97] GERGINOV V, BELOY K. Two-photon optical frequency reference with active ac Stark shift cancellation[J]. Physical Review Applied, 2018, 10(1): 014031. doi: 10.1103/PhysRevApplied.10.014031
    [98] NGUYEN T N, SCHIBLI T R. Temperature-shift-suppression scheme for two-photon two-color rubidium vapor clocks[J]. Physical Review A, 2022, 106(5): 053104. doi: 10.1103/PhysRevA.106.053104
    [99] 薛文祥, 陈江, 杜志静, 等. 温度对POP Rb原子钟性能影响的研究[J]. 时间频率学报,2012,35(3):129-136. doi: 10.3969/j.issn.1674-0637.2012.03.001

    XUE W X, CHEN J, DU ZH J, et al. Study of the temperature effect on POP Rb atomic clock[J]. Journal of Time and Frequency, 2012, 35(3): 129-136. (in Chinese). doi: 10.3969/j.issn.1674-0637.2012.03.001
    [100] ROSLUND J D, CINGÖZ A, LUNDEN W D, et al. Optical clocks at sea[J]. Nature, 2024, 628(8009): 736-740. doi: 10.1038/s41586-024-07225-2
    [101] 沈自才, 崔云, 牛锦超. 激光技术在航天工程中的应用及对策[J]. 红外与激光工程,2012,41(10):2703-2711. doi: 10.3969/j.issn.1007-2276.2012.10.028

    SHEN Z C, CUI Y, NIU J CH. Applications and countermeasures of laser technology in space engineering[J]. Infrared and Laser Engineering, 2012, 41(10): 2703-2711. (in Chinese). doi: 10.3969/j.issn.1007-2276.2012.10.028
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  94
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-12
  • 录用日期:  2024-10-08
  • 网络出版日期:  2024-10-16

目录

    /

    返回文章
    返回