Improvement of signal-to-noise ratio for phase-sensitive optical time-domain reflecting system
-
摘要:
相位敏感型光时域反射系统(Φ-OTDR)的灵敏度受激光器的相位噪声、掺铒光纤放大器的自发辐射噪声、光电探测器的散粒噪声及热噪声等系统固有噪声和环境随机噪声的制约,因此,本文研究光时域反射数据的降噪算法,在不降低系统频率响应范围的条件下提高系统的信噪比。本文提出Savitzky-Golay平滑算法,选择固定长度的滑动窗口,对窗口内的光时域反射数据进行降噪处理,同时保持数据的采样频率,并搭建实验系统进行验证。实验结果显示:采用Savitzky-Golay平滑算法,系统的信噪比相对于原始信号逐差法的信噪比提高了5.41 dB,与常用的累加平均算法、滑动平均算法相比信噪比分别提升3.39 dB和5.05 dB。结果表明:Savitzky-Golay平滑算法可提高Φ-OTDR系统的灵敏度和准确度,使其能够精准的感知微小振动事件,以降低系统误报率。
-
关键词:
- 相位敏感光时域反射仪 /
- Savitzky-Golay平滑算法 /
- 信噪比 /
- 阈值定位
Abstract:The sensitivity of phase-sensitive optical time-domain reflecting (Φ-OTDR) system is limited by the intrinsic system noise such as the phase noise of the laser, the spontaneous emission noise of the erbium-doped fiber amplifier, and the shot noise and thermal noise of the photodetector, as well as the random noise in the environment. Therefore, the noise reduction algorithms based on the optical time-domain reflecting data is investigated to improve the signal-to-noise ratio (SNR) of the system without degrading the frequency response range. And the Savitzky-Golay smoothing algorithm is proposed by selecting a slidable window with fixed-length to process OTDR data for the SNR improvement, while maintaining the system sampling frequency, and then, the experimental system is built to demonstrate the results. The experimental results show that by using the Savitzky-Golay smoothing algorithm, the SNR of the system is improved by 5.41dB relative to that by difference method with the original data, and the SNR is improved by 3.39dB and 5.05dB respectively, compared to the commonly used cumulative averaging method and sliding averaging method. It is demonstrated that the Savitzky-Golay smoothing algorithm can improve the sensitivity and accuracy of the Φ-OTDR system, which helps to accurately sense weak vibration events and reduce false alarm rate.
-
-
[1] 刘舒馨, 祝苒, 刘忠富. 分布式光纤传感器在地震监测中的应用综述[J]. 山西电子技术,2023(5):108-110. doi: 10.3969/j.issn.1674-4578.2023.05.036LIU SH X, ZHU R, LIU ZH F. Application of distributed fiber optic sensor in seismic monitoring[J]. Shanxi Electronic Technology, 2023(5): 108-110. (in Chinese). doi: 10.3969/j.issn.1674-4578.2023.05.036 [2] ELSHERIF M, SALIH A E, MUÑOZ M G, et al. Optical fiber sensors: working principle, applications, and limitations[J]. Advanced Photonics Research, 2022, 3(11): 2100371. doi: 10.1002/adpr.202100371 [3] DUAN R. Real-time hotspot tracing and model analysis of a distributed optical fiber sensor integrated power transformer[J]. IEEE Access, 2022, 10: 57242-57254. doi: 10.1109/ACCESS.2022.3177844 [4] 江虹, 曾庆龙, 李家成. 基于VMD与MFE的光纤周界安防入侵事件识别[J]. 激光与红外,2023,53(7):1073-1080. doi: 10.3969/j.issn.1001-5078.2023.07.014JIANG H, ZENG Q L, LI J CH. Intrusion event identification for fiber optic perimeter security based on VMD and MFE[J]. Laser & Infrared, 2023, 53(7): 1073-1080. (in Chinese). doi: 10.3969/j.issn.1001-5078.2023.07.014 [5] CHAMOIN L, FARAHBAKHSH S, PONCELET M. An educational review on distributed optic fiber sensing based on Rayleigh backscattering for damage tracking and structural health monitoring[J]. Measurement Science and Technology, 2022, 33(12): 124008. doi: 10.1088/1361-6501/ac9152 [6] ASHRY I, MAO Y, WANG B W, et al. A review of distributed fiber–optic sensing in the oil and gas industry[J]. Journal of Lightwave Technology, 2022, 40(5): 1407-1431. doi: 10.1109/JLT.2021.3135653 [7] LIU SH Q, YU F H, HONG R, et al. Advances in phase-sensitive optical time-domain reflectometry[J]. Opto-Electronic Advances, 2022, 5(3): 200078. doi: 10.29026/oea.2022.200078 [8] HEALEY P. Fading in heterodyne OTDR[J]. Electronics Letters, 1984, 20(1): 30-32. doi: 10.1049/el:19840022 [9] SHATALIN S V, TRESCHIKOV V N, ROGERS A J. Interferometric optical time-domain reflectometry for distributed optical-fiber sensing[J]. Applied Optics, 1998, 37(24): 5600-5604. doi: 10.1364/AO.37.005600 [10] LIAO Y H, LI K, GONG Y D. Research on the noise suppression by φ-OTDR[J]. Journal of Optics, 2024: 1-10. (查阅网上资料, 未找到对应的卷期页码信息, 请确认) . [11] SUN Y T, MA H ZH. Progress of Fiber Bragg Grating Sensors in state perception of electrical equipment[J]. Measurement, 2023, 222: 113691. doi: 10.1016/j.measurement.2023.113691 [12] LU Y L, ZHU T, CHEN L, et al. Distributed vibration sensor based on coherent detection of phase-OTDR[J]. Journal of Lightwave Technology, 2010, 28(22): 3243-3249. [13] PAN ZH Q, LIANG K ZH, ZHOU J, et al. Interference-fading-free phase-demodulated OTDR system[J]. Proceedings of SPIE, 2012, 8421: 842129. doi: 10.1117/12.975656 [14] ZHU T, XIAO X H, HE Q, et al. Enhancement of SNR and spatial resolution in φ-OTDR system by using two-dimensional edge detection method[J]. Journal of Lightwave Technology, 2013, 31(17): 2851-2856. doi: 10.1109/JLT.2013.2273553 [15] CHEN D, LIU Q W, HE Z Y. Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR[J]. Optics Express, 2017, 25(7): 8315-8325. doi: 10.1364/OE.25.008315 [16] CHEN D, LIU Q W, HE Z Y. High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution[J]. Optics Express, 2018, 26(13): 16138-16146. doi: 10.1364/OE.26.016138 [17] CHEN W, MA X H, MA Q L, et al. Denoising method of the Φ-OTDR system based on EMD-PCC[J]. IEEE Sensors Journal, 2021, 21(10): 12113-12118. doi: 10.1109/JSEN.2020.3033674 [18] 杨文晨, 秦增光, 刘兆军, 等. 基于希尔伯特-黄变换的双马赫-曾德分布式光纤传感振动定位方法[J]. 中国光学,2021,14(6):1410-1416. doi: 10.37188/CO.2021-0065YANG W CH, QIN Z G, LIU ZH J, et al. A Hilbert-Huang transform method for vibration localization based on a dual Mach-Zehnder distributed optical fiber sensor[J]. Chinese Optics, 2021, 14(6): 1410-1416. (in Chinese). doi: 10.37188/CO.2021-0065 [19] LI T X, ZHANG F D, LIN J, et al. Fading noise suppression method of Φ-OTDR system based on GA-VMD algorithm[J]. IEEE Sensors Journal, 2023, 23(19): 22608-22619. doi: 10.1109/JSEN.2023.3306199 [20] MARIE T F B, BIN Y, DEZHI H, et al. Principle and application state of fully distributed fiber optic vibration detection technology based on Φ-OTDR: a review[J]. IEEE Sensors Journal, 2021, 21(15): 16428-16442. doi: 10.1109/JSEN.2021.3081459 [21] BAI X Y, LIU H ZH, LIN J, et al. SNR enhancement method for Φ-OTDR system based on Sdr SampEn-BiPSO-SVD algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 9502212. [22] 潘冬阳, 南钢洋, 白雪. 基于高速信号采集系统累加平均算法研究[J]. 仪表技术与传感器,2021(8):122-125. doi: 10.3969/j.issn.1002-1841.2021.08.026PAN D Y, NAN G Y, BAI X. Research on overlapping average algorithm based on high speed signal acquisition system[J]. Instrument Technique and Sensor, 2021(8): 122-125. (in Chinese). doi: 10.3969/j.issn.1002-1841.2021.08.026 [23] NAKAJIMA I, MURAKI Y, ICHIMURA H, et al. Value and challenges of using the Savitzky-Golay method for ECG noise reduction[C]. Proceedings of 2022 International Conference on Electrical, Computer and Energy Technologies, IEEE, 2022: 1-5. [24] NIEDŹWIECKI M J, CIOŁEK M, GAŃCZA A, et al. Application of regularized Savitzky–Golay filters to identification of time-varying systems[J]. Automatica, 2021, 133: 109865. doi: 10.1016/j.automatica.2021.109865 [25] JUAREZ J C, TAYLOR H F. Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system[J]. Optics Letters, 2005, 30(24): 3284-3286. doi: 10.1364/OL.30.003284 [26] ZHOU ZH X, TIAN L, HAN Y SH, et al. Distributed vibration and temperature simultaneous sensing using one optical fiber[J]. Optics Communications, 2021, 487: 126801. doi: 10.1016/j.optcom.2021.126801