留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2/PSS薄膜对Kretschmann型传感器光谱的调制

杨艳 张慧敏 张旭霖 闫秀晶 蔡雷 李秋顺 董文飞

杨艳, 张慧敏, 张旭霖, 闫秀晶, 蔡雷, 李秋顺, 董文飞. TiO2/PSS薄膜对Kretschmann型传感器光谱的调制[J]. 中国光学(中英文), 2025, 18(2): 297-306. doi: 10.37188/CO.2024-0125
引用本文: 杨艳, 张慧敏, 张旭霖, 闫秀晶, 蔡雷, 李秋顺, 董文飞. TiO2/PSS薄膜对Kretschmann型传感器光谱的调制[J]. 中国光学(中英文), 2025, 18(2): 297-306. doi: 10.37188/CO.2024-0125
YANG Yan, ZHANG Hui-min, ZHANG Xu-lin, YAN Xiu-jing, CAI Lei, LI Qiu-shun, DONG Wen-fei. Modulation of a Kretschmann-type sensor’s spectra using TiO2/PSS thin films[J]. Chinese Optics, 2025, 18(2): 297-306. doi: 10.37188/CO.2024-0125
Citation: YANG Yan, ZHANG Hui-min, ZHANG Xu-lin, YAN Xiu-jing, CAI Lei, LI Qiu-shun, DONG Wen-fei. Modulation of a Kretschmann-type sensor’s spectra using TiO2/PSS thin films[J]. Chinese Optics, 2025, 18(2): 297-306. doi: 10.37188/CO.2024-0125

TiO2/PSS薄膜对Kretschmann型传感器光谱的调制

cstr: 32171.14.CO.2024-0125
基金项目: 国家重点研发计划项目(No. 2022YFC2403500);国家自然科学基金项目(No. 62027825,No. 61340032);山东省自然科学基金项目(No. ZR2019MC069)
详细信息
    作者简介:

    李秋顺(1969—),男,山东济南人,博士,副研究员,硕士生导师, 2009年于吉林大学获得博士学位,主要从事纳米光子学技术、光电生化检测技术等方面的研究。E-mail:lishun1688@126.com

  • 中图分类号: O648.14;O657.39;O433.1

Modulation of a Kretschmann-type sensor’s spectra using TiO2/PSS thin films

Funds: Supported by National Key R&D Program of China (No. 2022YFC2403500); National Natural Science Foundation of China (No. 62027825, No. 61340032); Shandong Provincial Natural Science Foundation (No. ZR2019MC069)
More Information
  • 摘要:

    为了探索二氧化钛(TiO2)/聚对苯乙烯磺酸钠(PSS)纳米薄膜对Kretschmann型表面等离子体共振传感器的影响,系统地研究了沉积不同厚度TiO2/ PSS纳米薄膜后传感器的光谱变化,并通过理论模拟分析了光谱变化的内在原因。首先,采用静电层层自组装技术在溅射了金膜的玻璃芯片表面原位沉积了不同层数的TiO2/PSS薄膜,并实时记录了相应的反射光谱。然后,对原始反射光谱数据进行处理,使光谱曲线更加清晰可见。最后,用MATLAB软件编程对实验结果进行了模拟分析。结果显示,在450~900 nm的波长范围内,随着TiO2/PSS层数的增加,传感器光谱中先后出现了4种不同类型的反射峰,这4类反射峰分别对应了传感器的表面等离子体共振模式、横磁模的一阶模式、二阶模式和三阶模式。研究结果表明通过控制TiO2/PSS薄膜的厚度能调制Kretschmann型传感器的感应模式和反射光谱类型。

     

  • 图 1  Kretschmann型表面等离子共振传感器测量原理图

    Figure 1.  Schematic diagram of the Kretschmann-type surface plasmon resonance sensor’s measurement principle

    图 2  Kretschmann型传感器测试方案框架图

    Figure 2.  Framework diagram of the testing scheme for the Kretschmann-type sensor

    图 3  TiO2/PSS多层膜在空气中的UV-Vis吸收光谱。内插图是250 nm波长下吸收强度与双层数之间的函数关系

    Figure 3.  UV-Vis absorption spectra of TiO2/PSS multilayer films in air. The inset picture is the absorbance intensity at 250 nm v.s. the number of bilayers

    图 4  组装不同双层TiO2/PSS膜的传感器的反射光谱:在水中的结果,(a)n为1~5,(c)n为9~19,(e)n为21~36;在空气中的结果,(b)n为1~5,(d)n为12~25,(f)n为28~48

    Figure 4.  Reflected light intensity spectra of sensors with different bilayers of TiO2/PSS films: in water (a) n = 1−5, (c) n = 9−19, (e) n = 21−36; in air (b) n = 1−5, (d) n = 12−25, (f) n = 28−48

    图 5  组装不同双层TiO2/PSS薄膜的传感器在水和空气中的吸收光谱。(a)n = 1~5,(b)n = 9~19,(c)n = 20~34,(d)n = 35~48

    Figure 5.  Absorption spectra of sensors assembled with different bilayer TiO2/PSS films in both water and air. (a) n = 1−5, (b) n = 9−19 , (c) n = 20−34, (d) n = 35−48

    图 6  组装 TiO2/PSS薄膜的传感器反射光谱中的反射峰波长与TiO2/PSS薄膜层数之间的关系。(a)在水中的结果,a代表n=0~1,b代表n=9~19,c代表n=20~34,d代表n=35~48;(b)在空气中的结果e代表n=1~5,f代表n=11~19,g代表n=25~34,h代表n=38~48

    Figure 6.  The relationship between the resonance wavelength in the reflectance spectrum and the number of TiO2/PSS film bilayers. (a) In water a: n = 0−1, b: n = 9−19, c: n = 20−34, d: n = 35−48; b: in air e: n = 1−5, f: n = 11−19, g: n = 25−34, h: n = 38−48

    图 7  TiO2/PSS薄膜厚度与Kretschmann型传感器的横向磁场模式分布之间的关系。(a)在水中,薄膜厚度为100 nm;(b)在水中,薄膜厚度为300 nm;(c)在空气中,薄膜厚度为400 nm;(d)在水中,薄膜厚度为600 nm;(e)在水中,薄膜厚度为1000 nm

    Figure 7.  The relationship between the film thickness and transverse magnetic field mode distribution. (a) 100-nm thick film in water, (b) 300-nm thick film in water, (c) 400-nm thick film in air, (d) 600-nm thick film in water, (e) 1000-nm thick film in water

  • [1] LETKO E, BUNDULIS A, VANAGS E, et al. Lossy mode resonance in photonic integrated circuits[J]. Optics and Lasers in Engineering, 2024, 181: 108387. doi: 10.1016/j.optlaseng.2024.108387
    [2] DOMINGUEZ I, CORRES J, MATIAS I R, et al. High sensitivity lossy-mode resonance refractometer using low refractive index PFA planar waveguide[J]. Optics & Laser Technology, 2023, 162: 109235.
    [3] SUDAS D P, JITOV V A, YAKUSHCHEVA G G, et al. Increasing the sensitivity of chemically resistant lossy mode resonance-based sensors on Al2O3 coatings[J]. Optical Materials, 2024, 149: 115031. doi: 10.1016/j.optmat.2024.115031
    [4] DOMINGUEZ I, CORRES J M, DEL VILLAR I, et al. Electrochemical lossy mode resonance for detection of manganese ions[J]. Sensors and Actuators B: Chemical, 2023, 394: 134446. doi: 10.1016/j.snb.2023.134446
    [5] HERNAEZ M, MAYES A G, MELENDI-ESPINA S. Graphene oxide in lossy mode resonance-based optical fiber sensors for ethanol detection[J]. Sensors, 2018, 18(1): 58.
    [6] ZAMARREÑO C R, HERNÁEZ M, DEL VILLAR I, et al. Optical fiber pH sensor fabrication by means of indium tin oxide coated optical fiber refractometers[J]. Physica Status Solidi C, 2010, 7(11-12): 2705-2707. doi: 10.1002/pssc.200983800
    [7] MARTÍNEZ E E G, MATÍAS I R, MELENDI-ESPINA S, et al. Lossy mode resonance based 1-butanol sensor in the mid-infrared region[J]. Sensors and Actuators B: Chemical, 2023, 388: 133845. doi: 10.1016/j.snb.2023.133845
    [8] PITUŁA E, JANIK M, SEZEMSKY P, et al. Smartphone-based dynamic measurements of electro-optically modulated lossy-mode resonance and its biosensing applications[J]. Measurement, 2023, 206: 112349. doi: 10.1016/j.measurement.2022.112349
    [9] BENÍTEZ M, ZUBIATE P, SOCORRO-LERÁNOZ A B, et al. Lossy mode resonance-based optical immunosensor towards detecting gliadin in aqueous solutions[J]. Food Control, 2023, 147: 109624. doi: 10.1016/j.foodcont.2023.109624
    [10] 曹修冕, 赵军毅, 霍泽鹏, 等. 基于棱镜型消逝场耦合增强拉曼/荧光原位光谱检测系统[J]. 光谱学与光谱分析,2023,43(S1):189-190.

    CAO X M, ZHAO J Y, HUO Z P, et al. In situ spectroscopic system based on evanescent field-coupled Raman/fluorescence enhancement via a Kretschmann prism[J]. Spectroscopy and Spectral Analysis, 2023, 43(S1): 189-190. (in Chinese).
    [11] ZHANG ZH, LU D F, QI ZH M. Application of porous TiO2 thin films as wavelength-interrogated waveguide resonance sensors for bio/chemical detection[J]. The Journal of Physical Chemistry C, 2012, 116(5): 3342-3348. doi: 10.1021/jp2102429
    [12] VILLAR I D, TORRES V, BERUETE M. Experimental demonstration of lossy mode and surface plasmon resonance generation with Kretschmann configuration[J]. Optics Letters, 2015, 40(20): 4739-4742. doi: 10.1364/OL.40.004739
    [13] ZHANG Y ZH, ZHANG P Y, ZHAO M L, et al. A high sensitivity lossy mode resonance refractive index sensor based on SBS structure[J]. Results in Physics, 2022, 36: 105454. doi: 10.1016/j.rinp.2022.105454
    [14] YAN M L, WANG R D, WANG Q, et al. Label-free and highly-sensitive protamine detection by layer-by-layer assembled chitosan/heparin functionalized optical fiber mode interferometer[J]. Sensors and Actuators B: Chemical, 2023, 395: 134414. doi: 10.1016/j.snb.2023.134414
    [15] EHSANIMEHR S, SONNIER R, NAJAFI P, et al. Layer-by-layer polymer deposited fabrics with superior flame retardancy and electrical conductivity[J]. Reactive and Functional Polymers, 2022, 173: 105221. doi: 10.1016/j.reactfunctpolym.2022.105221
    [16] AL-HAMRY A, LU T Q, BAI J, et al. Versatile sensing capabilities of layer-by-layer deposited polyaniline-reduced graphene oxide composite-based sensors[J]. Sensors and Actuators B: Chemical, 2023, 390: 133988. doi: 10.1016/j.snb.2023.133988
    [17] 王梦竹, 邓勇靖, 刘淑娟, 等. 有机自组装低维圆偏振发光材料的研究进展[J]. 中国光学,2021,14(1):66-76. doi: 10.37188/CO.2020-0192

    WANG M ZH, DENG Y J, LIU SH J, et al. Research progress on organic self-assembling low-dimensional circularly polarized luminescent materials[J]. Chinese Optics, 2021, 14(1): 66-76. (in Chinese). doi: 10.37188/CO.2020-0192
    [18] DECHER G. Fuzzy nanoassemblies: toward layered polymeric multicomposites[J]. Science, 1997, 277(5330): 1232-1237. doi: 10.1126/science.277.5330.1232
    [19] LI Q SH, YANG Y, DU Y D, et al. Highly sensitive detection of low-concentration sodium chloride solutions based on polymeric nanofilms coated long period fiber grating[J]. Talanta, 2023, 254: 124126. doi: 10.1016/j.talanta.2022.124126
    [20] YANG R ZH, DONG W F, MENG X, et al. Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes[J]. Langmuir, 2012, 28(23): 8814-8821. doi: 10.1021/la301445h
    [21] LI Q SH, HE H, WANG J N, et al. Label-free detection of biotin using nanoporous TiO2/DNA thin-film coated wavelength interrogated surface plasmon resonance sensors[J]. Chemical Research in Chinese Universities, 2014, 30(1): 157-162. doi: 10.1007/s40242-014-3312-y
    [22] QI ZH M, HONMA I, ZHOU H SH. Nanoporous leaky waveguide based chemical and biological sensors with broadband spectroscopy[J]. Applied Physics Letters, 2007, 90(1): 011102. doi: 10.1063/1.2424643
  • 加载中
图(7)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  72
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-06
  • 修回日期:  2024-09-19
  • 网络出版日期:  2024-11-12

目录

    /

    返回文章
    返回