Modulation of a Kretschmann-type sensor’s spectra using TiO2/PSS thin films
-
摘要:
为了探索二氧化钛(TiO2)/聚对苯乙烯磺酸钠(PSS)纳米薄膜对Kretschmann型表面等离子体共振传感器的影响,系统地研究了沉积不同厚度TiO2/ PSS纳米薄膜后传感器的光谱变化,并通过理论模拟分析了光谱变化的内在原因。首先,采用静电层层自组装技术在溅射了金膜的玻璃芯片表面原位沉积了不同层数的TiO2/PSS薄膜,并实时记录了相应的反射光谱。然后,对原始反射光谱数据进行处理,使光谱曲线更加清晰可见。最后,用MATLAB软件编程对实验结果进行了模拟分析。结果显示,在450~900 nm的波长范围内,随着TiO2/PSS层数的增加,传感器光谱中先后出现了4种不同类型的反射峰,这4类反射峰分别对应了传感器的表面等离子体共振模式、横磁模的一阶模式、二阶模式和三阶模式,这表明通过控制TiO2/PSS薄膜的厚度能调制Kretschmann型传感器的感应模式和反射光谱类型。
-
关键词:
- Kretschmann /
- 传感器 /
- 层层自组装 /
- 传感模式
Abstract:In order to explore the effect of titanium dioxide (TiO2)/poly(sodium 4-styrenesulfonate) (PSS) nanofilms on the Kretschmann-type surface plasmon resonance sensor, the spectral changes of the sensor after depositing TiO2/PSS nanofilms of different thicknesses were systematically studied. The reasons for the spectral changes were further explained and discussed theoretically. First, TiO2/PSS multilayer films were deposited in situ on the surface of the glass chip sputtered with a gold layer via electrostatic layer-by-layer self-assembly technology, and the corresponding reflection spectra of the sensor were recorded in real time. Then, the original reflectance spectrum data was processed to make the spectral curve clearer and more visible. Finally, the experimental results were simulated and analyzed using MATLAB software programming. The results show that as the number of TiO2/PSS bilayers increased, four different types of reflection peaks successively appeared in the sensor’s spectra in the 450−900 nm wavelength range. The four types of reflection peaks correspond to the surface plasmon resonance mode, the first-order mode, the second-order mode, and the third-order mode of the transverse magnetic mode of the sensor, respectively. This indicates that the Kretschmann-type sensor’s sensing mode and reflection spectrum type can be modulated by controlling the thickness of TiO2/PSS thin films.
-
Key words:
- Kretschmann /
- sensor /
- layer-by-layer self-assembly /
- sensing mode
-
图 4 组装不同双层TiO2/PSS膜的传感器的反射光谱:在水中(a)n = 1~5,(c)n = 9~19,(e)n = 21~36;在空气中(b)n = 1~5,(d)n = 12~25,(f)n = 28~48
Figure 4. Reflected light intensity spectra of sensors with different bilayers of TiO2/PSS films: in water (a) n = 1 - 5, (c) n = 9 - 19, (e) n = 21 - 36; in air (b) n = 1 - 5, (d) n = 12 - 25, (f) n = 28 - 48
图 6 组装 TiO2/PSS薄膜的传感器反射光谱中的反射峰波长与TiO2/PSS薄膜层数之间的关系。A:在水中(a)n=0~1,(b)n=9~19,(c)n=20~34,(d)n=35~48;B:在空气中(e)n=1~5,(f)n=11~19,(g)n=25~34,(h)n=38~48
Figure 6. The relationship between the resonance wavelength in the reflectance spectrum and the number of TiO2/PSS film bilayers. A: in water (a) n = 0 - 1, (b) n = 9 - 19, (c) n = 20 - 34, (d) n = 35 - 48; B: in air (e) n = 1 - 5, (f) n = 11 - 19, (g) n = 25 - 34, (h) n = 38 - 48
图 7 TiO2/PSS薄膜厚度与Kretschmann型传感器的横向磁场模式分布之间的关系:(a)在水中,薄膜厚度为100 nm;(b)在水中,薄膜厚度为300 nm;(c)在空气中,薄膜厚度为400 nm;(d)在水中,薄膜厚度为600 nm;(e)在水中,薄膜厚度为
1000 nmFigure 7. The relationship between the film thickness and transverse magnetic field mode distribution: (a) 100 nm thick film in water, (b) 300 nm thick film in water, (c) 400 nm thick film in air, (d) 600 nm thick film in water, (e)
1000 nm thick film in water -
[1] LETKO E, BUNDULIS A, VANAGS E, et al. Lossy mode resonance in photonic integrated circuits[J]. Optics and Lasers in Engineering, 2024, 181: 108387. doi: 10.1016/j.optlaseng.2024.108387 [2] DOMINGUEZ I, CORRES J, MATIAS I R, et al. High sensitivity lossy-mode resonance refractometer using low refractive index PFA planar waveguide[J]. Optics & Laser Technology, 2023, 162: 109235. [3] SUDAS D P, JITOV V A, YAKUSHCHEVA G G, et al. Increasing the sensitivity of chemically resistant lossy mode resonance-based sensors on Al2O3 coatings[J]. Optical Materials, 2024, 149: 115031. doi: 10.1016/j.optmat.2024.115031 [4] DOMINGUEZ I, CORRES J M, DEL VILLAR I, et al. Electrochemical lossy mode resonance for detection of manganese ions[J]. Sensors and Actuators B: Chemical, 2023, 394: 134446. doi: 10.1016/j.snb.2023.134446 [5] HERNAEZ M, MAYES A G, MELENDI-ESPINA S. Graphene oxide in lossy mode resonance-based optical fiber sensors for ethanol detection[J]. Sensors, 2018, 18(1): 58. [6] ZAMARREÑO C R, HERNÁEZ M, DEL VILLAR I, et al. Optical fiber pH sensor fabrication by means of indium tin oxide coated optical fiber refractometers[J]. Physica Status Solidi C, 2010, 7(11-12): 2705-2707. doi: 10.1002/pssc.200983800 [7] MARTÍNEZ E E G, MATÍAS I R, MELENDI-ESPINA S, et al. Lossy mode resonance based 1-butanol sensor in the mid-infrared region[J]. Sensors and Actuators B: Chemical, 2023, 388: 133845. doi: 10.1016/j.snb.2023.133845 [8] PITUŁA E, JANIK M, SEZEMSKY P, et al. Smartphone-based dynamic measurements of electro-optically modulated lossy-mode resonance and its biosensing applications[J]. Measurement, 2023, 206: 112349. doi: 10.1016/j.measurement.2022.112349 [9] BENÍTEZ M, ZUBIATE P, SOCORRO-LERÁNOZ A B, et al. Lossy mode resonance-based optical immunosensor towards detecting gliadin in aqueous solutions[J]. Food Control, 2023, 147: 109624. doi: 10.1016/j.foodcont.2023.109624 [10] 曹修冕, 赵军毅, 霍泽鹏, 等. 基于棱镜型消逝场耦合增强拉曼/荧光原位光谱检测系统[J]. 光谱学与光谱分析,2023,43(S1):189-190.CAO X M, ZHAO J Y, HUO Z P, et al. In situ spectroscopic system based on evanescent field-coupled Raman/fluorescence enhancement via a Kretschmann prism[J]. Spectroscopy and Spectral Analysis, 2023, 43(S1): 189-190. (in Chinese). [11] ZHANG ZH, LU D F, QI ZH M. Application of porous TiO2 thin films as wavelength-interrogated waveguide resonance sensors for bio/chemical detection[J]. The Journal of Physical Chemistry C, 2012, 116(5): 3342-3348. doi: 10.1021/jp2102429 [12] VILLAR I D, TORRES V, BERUETE M. Experimental demonstration of lossy mode and surface plasmon resonance generation with Kretschmann configuration[J]. Optics Letters, 2015, 40(20): 4739-4742. doi: 10.1364/OL.40.004739 [13] ZHANG Y ZH, ZHANG P Y, ZHAO M L, et al. A high sensitivity lossy mode resonance refractive index sensor based on SBS structure[J]. Results in Physics, 2022, 36: 105454. doi: 10.1016/j.rinp.2022.105454 [14] YAN M L, WANG R D, WANG Q, et al. Label-free and highly-sensitive protamine detection by layer-by-layer assembled chitosan/heparin functionalized optical fiber mode interferometer[J]. Sensors and Actuators B: Chemical, 2023, 395: 134414. doi: 10.1016/j.snb.2023.134414 [15] EHSANIMEHR S, SONNIER R, NAJAFI P, et al. Layer-by-layer polymer deposited fabrics with superior flame retardancy and electrical conductivity[J]. Reactive and Functional Polymers, 2022, 173: 105221. doi: 10.1016/j.reactfunctpolym.2022.105221 [16] AL-HAMRY A, LU T Q, BAI J, et al. Versatile sensing capabilities of layer-by-layer deposited polyaniline-reduced graphene oxide composite-based sensors[J]. Sensors and Actuators B: Chemical, 2023, 390: 133988. doi: 10.1016/j.snb.2023.133988 [17] 王梦竹, 邓勇靖, 刘淑娟, 等. 有机自组装低维圆偏振发光材料的研究进展[J]. 中国光学,2021,14(1):66-76. doi: 10.37188/CO.2020-0192WANG M ZH, DENG Y J, LIU SH J, et al. Research progress on organic self-assembling low-dimensional circularly polarized luminescent materials[J]. Chinese Optics, 2021, 14(1): 66-76. (in Chinese). doi: 10.37188/CO.2020-0192 [18] DECHER G. Fuzzy nanoassemblies: toward layered polymeric multicomposites[J]. Science, 1997, 277(5330): 1232-1237. doi: 10.1126/science.277.5330.1232 [19] LI Q SH, YANG Y, DU Y D, et al. Highly sensitive detection of low-concentration sodium chloride solutions based on polymeric nanofilms coated long period fiber grating[J]. Talanta, 2023, 254: 124126. doi: 10.1016/j.talanta.2022.124126 [20] YANG R ZH, DONG W F, MENG X, et al. Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes[J]. Langmuir, 2012, 28(23): 8814-8821. doi: 10.1021/la301445h [21] LI Q SH, HE H, WANG J N, et al. Label-free detection of biotin using nanoporous TiO2/DNA thin-film coated wavelength interrogated surface plasmon resonance sensors[J]. Chemical Research in Chinese Universities, 2014, 30(1): 157-162. doi: 10.1007/s40242-014-3312-y [22] QI ZH M, HONMA I, ZHOU H SH. Nanoporous leaky waveguide based chemical and biological sensors with broadband spectroscopy[J]. Applied Physics Letters, 2007, 90(1): 011102. doi: 10.1063/1.2424643