留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合TG-TDLAS的煤热解反应毒性的评估

孟星星 康文运 王庚乾 李琳 田亚莉 郭古青 刘强 邱选兵 李传亮

孟星星, 康文运, 王庚乾, 李琳, 田亚莉, 郭古青, 刘强, 邱选兵, 李传亮. 结合TG-TDLAS的煤热解反应毒性的评估[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0128
引用本文: 孟星星, 康文运, 王庚乾, 李琳, 田亚莉, 郭古青, 刘强, 邱选兵, 李传亮. 结合TG-TDLAS的煤热解反应毒性的评估[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0128
MENG Xing-xing, KANG Wen-yun, WANG Geng-qian, LI Lin, TIAN Ya-li, GUO Gu-qing, LIU Qiang, QIU Xuan-bing, LI Chuan-liang. Assessment of the toxicity of coal pyrolysis reaction in combination with TG-TDLAS[J]. Chinese Optics. doi: 10.37188/CO.2024-0128
Citation: MENG Xing-xing, KANG Wen-yun, WANG Geng-qian, LI Lin, TIAN Ya-li, GUO Gu-qing, LIU Qiang, QIU Xuan-bing, LI Chuan-liang. Assessment of the toxicity of coal pyrolysis reaction in combination with TG-TDLAS[J]. Chinese Optics. doi: 10.37188/CO.2024-0128

结合TG-TDLAS的煤热解反应毒性的评估

cstr: 32171.14.CO.2024-0128
基金项目: 国家重点研发计划(No. 2023YFF0718100);国家自然科学基金(No. 62475182,No. 52076145 & No. 12304403);山西省科技创新人才团队专项资助(No. 202304051001034);山西省重点研发计划(No. 202302150101017);山西省留学人员科技活动项目(No. 20230031);山西省省筹资金资助回国留学人员科研资助项目(No. 2023-151);山西省基础研究计划(No. 202303021221147,No. 202203021222204 & No. 202303021212224);山西省科技合作交流专项(No. 202304041101022);江淮前沿技术协同创新中心追梦基金课题(No. 2023-ZM01C002);太原科技大学科研启动基金(No. 20222121 & No. 20232033);山西省科研实践创新类项目(No. 2023KY667)
详细信息
    作者简介:

    孟星星(1998—),男,山西朔州人,硕士研究生,2021年于太原科技大学获得学士学位,现于太原科技大学就读硕士,主要从事TDLAS气体检测。E-mail:1977382035@qq.com

    邱选兵(1980—),男,四川资中人,博士,教授,2003年在重庆大学获得学士学位,2006年在太原理工大学获得硕士学位,2013年在太原科技大学获得博士学位,主要从事光电微机接口技术、嵌入式系统等方面的研究。E-mail:qiuxb@tyust.edu.cn

  • 中图分类号: TP394.1;TH691.9

Assessment of the toxicity of coal pyrolysis reaction in combination with TG-TDLAS

Funds: National Key R&D Program of China (No. 2023YFF0718100); National Natural Science Foundation of China (No. 62475182, No. 52076145 & No. 12304403); Special Funding for Shanxi Provincial Science and Technology Innovation Talent Team (No. 202304051001034); Key R&D Program of Shanxi Province (No. 202302150101017); Science and Technology Activities Project for Overseas Students in Shanxi Province (No. 20230031); Shanxi Provincial Fund-raising Funding Project for Returning Overseas Students (2023-151); Basic Research Program of Shanxi Province (No. 202303021221147, No. 202203021222204 & No. 202303021212224); Shanxi Provincial Science and Technology Cooperation and Exchange Project (No. 202304041101022); JAC Frontier Technology Collaborative Innovation Center Dream Fund Project (No. 2023-ZM01C002); Taiyuan University of Science and Technology Research Start-up Fund (No. 20222121 & No. 20232033); Shanxi Provincial Scientific Research Practice Innovation Project (No. 2023KY667)
More Information
  • 摘要:

    成功构建了一套基于热重-可调谐半导体激光吸收光谱技术(TG-TDLAS)的煤热解HCN气体浓度检测系统,并结合波长调制技术进一步提高了系统的稳定性和灵敏度。利用HCN在波长1531 nm处具有较高吸收强度且受烟气中常见气体干扰较小的特性,通过二次谐波信号处理获取HCN浓度信息。采用高精度的流量控制器,利用99%标准氮气稀释配比得到5×10-6 mol/mol到20×10-6 mol/mol的HCN,最后对测量数据进行校准。实验结果表明,HCN的线性相关系数R20.9978。基于该实验装置,深入探讨了不同煤种、升温速率和煤粒径大小对热解的影响,以及煤样失重率与HCN浓度释放量的关系。分析了三种不同煤化程度煤种的挥发分中HCN的释放特性和非等温热解动力学。通过划分热解温度阶段,建立了热解动力学模型,并计算不同煤种在不同升温速率下的活化能和频率因子。结果表明,HCN释放量与煤种煤化程度及含氮量密切相关,煤化程度越低,含氮量越高,其HCN释放量越多。在固定的热解终温下,升温速率的增加会导致HCN释放量的增多。随着煤样粒径的减小,热解反应释放HCN的时间会相对滞后,且HCN浓度有所减少。不同热解阶段HCN浓度释放量与煤样失重率之间存在不同的对应关系,热解反应越剧烈,HCN浓度释放量与煤样失重率的比重越大。本研究为进一步评估煤热解反应过程中HCN的毒性提供了重要的实验基础。

     

  • 图 1  煤热解HCN检测系统(a)系统原理图;(b)系统实物图

    Figure 1.  Coal pyrolysis HCN detection system (a) Schematic diagram of the system (b) Physical diagram of the system

    图 2  HCN在1531.154 nm附近的吸收谱线

    Figure 2.  Absorption line of HCN around 1531.154 nm

    图 3  (a) 在5-20×10−6 mol/mol范围HCN的光谱吸收曲线;(b) HCN信号强度随浓度变化的线性关系Fig. 3(a) Spectral absorption curves of HCN in the 5-20×10−6 mol/mol range; (b) Linear relationship of HCN signal intensity as a function of concentration

    图 4  烟煤在不同升温速率下释放的HCN浓度变化

    Figure 4.  Changes in HCN concentrations released by bituminous coal at different heating rates

    图 5  三种煤样在升温速率为20 °C/min下释放的HCN浓度变化

    Figure 5.  Changes in HCN concentrations released by the three coal samples at a warming rate of 20°C/min

    图 6  不同粒径的烟煤在升温速率为30 °C/min下的浓度变化

    Figure 6.  Concentration variation of bituminous coal with different particle sizes at a heating rate of 30°C/min

    图 7  褐煤在三种升温速率(a)10 °C/min(b)20 °C/min(c)30 °C/min下的浓度及热失重变化

    Figure 7.  Changes in the concentration and thermal weight loss of lignite at three heating rates (a)10°C/min (b)20°C/min (c)and 30°C/min

    表  1  不同煤种的工业分析

    Table  1.   Industrial analysis of different coal types

    全硫/Std灰分/ Ad挥发分/Vdaf
    山西褐煤12633
    山东烟煤1.959.5931.32
    山东无烟煤3.8513.110.19
    下载: 导出CSV

    表  2  不同煤种在不同升温速率下的热解动力学参数

    Table  2.   Kinetic parameters of pyrolysis of different coal types at different heating rates

    煤种 β, °C/min T, °C E,kJ/mol A, min−1 R2
    褐煤10421-65414.87512.0180.932
    654-89929.092109.6000.933
    20409-6329.6675.8980.975
    632-88025.396141.6290.968
    30453-64722.932107.2950.931
    647-89430.971458.6780.951
    烟煤10420-64027.519133.4820.990
    640-87031.750244.6560.965
    20443-66122.617103.4860.975
    661-89027.552182.3160.942
    30460-64320.100114.4840.933
    643-89027.061369.1500.941
    无烟煤10475-70844.6141163.0520.959
    708-89043.431653.3920.950
    20481-64845.2402450.5360.942
    650-89037.665670.2130.949
    30480-65042.5872383.3270.927
    650-89037.5561024.0360.931
    下载: 导出CSV
  • [1] WANG Z H, ZHANG J Y, ZHAO Y C, et al. Relationship between nitrogenous species in coals and volatile nitrogen-containing yields during pyrolysis[J]. Asia-Pacific Journal of Chemical Engineering, 2012, 7(1): 124-130. doi: 10.1002/apj.501
    [2] YUAN SH, ZHOU ZH J, LI J, et al. HCN and NH3 (NO x precursors) released under rapid pyrolysis of biomass/coal blends[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(2): 463-469. doi: 10.1016/j.jaap.2011.08.010
    [3] ZHANG J L, CHEN W S, YANG H M, et al. Formation of NH3 during temperature-programmed and isotherm pyrolysis of different rank coals[J]. Asian Journal of Chemistry, 2013, 25(13): 7571-7574. doi: 10.14233/ajchem.2013.15261
    [4] HE Q, CHENG CH, ZHANG X SH, et al. Insight into structural evolution and detailed non-isothermal kinetic analysis for coal pyrolysis[J]. Energy, 2022, 244: 123101. doi: 10.1016/j.energy.2022.123101
    [5] WU Y N, TAO SH, WANG ZH H, et al. Effect of pyrolysis atmospheres on gaseous products evolution of coal pyrolysis at high temperature[J]. Fuel, 2024, 366: 131336. doi: 10.1016/j.fuel.2024.131336
    [6] 张莹, 赵浩成, 李挺, 等. 不同热解升温速率下烟煤热解焦结构特性及其气化反应性的研究[J]. 广东化工,2023,50(6):35-38,92. doi: 10.3969/j.issn.1007-1865.2023.06.012

    ZHANG Y, ZHAO H CH, LI T, et al. Study on structure and gasification reactivity of char from different pyrolysis heating rates[J]. Guangdong Chemical Industry, 2023, 50(6): 35-38,92. (in Chinese). doi: 10.3969/j.issn.1007-1865.2023.06.012
    [7] GHANEKAR S, HORN G P, KESLER R M, et al. Quantification of elevated hydrogen cyanide (HCN) concentration typical in a residential fire environment using mid-IR tunable diode laser[J]. Applied Spectroscopy, 2023, 77(4): 382-392. doi: 10.1177/00037028231152498
    [8] SUN L SH, SHI J M, XIANG J, et al. Study on the release characteristics of HCN and NH3 during coal gasification[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(3): 403-407. doi: 10.1002/apj.276
    [9] YUAN SH, ZHOU ZH J, LI J, et al. Nitrogen conversion during rapid pyrolysis of coal and petroleum coke in a high-frequency furnace[J]. Applied Energy, 2012, 92: 854-859. doi: 10.1016/j.apenergy.2011.08.042
    [10] LIU J X, JIANG X M, SHEN J, et al. Pyrolysis of superfine pulverized coal. Part 3. Mechanisms of nitrogen-containing species formation[J]. Energy Conversion and Management, 2015, 94: 130-138. doi: 10.1016/j.enconman.2014.12.096
    [11] SONG H J, LIU G R, ZHANG J ZH, et al. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Processing Technology, 2017, 156: 454-460. doi: 10.1016/j.fuproc.2016.10.008
    [12] XU M X, LI SH Y, WU Y H, et al. Effects of CO2 on the fuel nitrogen conversion during coal rapid pyrolysis[J]. Fuel, 2016, 184: 430-439. doi: 10.1016/j.fuel.2016.06.130
    [13] MI Q Y, LI B, LI Y F, et al. Kinetic analysis of pyrolysis reaction of hydrogen-containing low rank coals based on thermogravimetric method[J]. Processes, 2023, 11(3): 706. doi: 10.3390/pr11030706
    [14] 段政, 孟星星, 李凯亮, 等. 煤热解中痕量乙烯在线激光吸收光谱检测[J]. 光学 精密工程,2024,32(5):670-677. doi: 10.37188/OPE.20243205.0670

    DUAN ZH, MENG X X, LI K L, et al. Online laser absorption spectroscopy detection of trace ethylene in coal pyrolysis[J]. Optics and Precision Engineering, 2024, 32(5): 670-677. (in Chinese). doi: 10.37188/OPE.20243205.0670
    [15] 杨舒涵, 乔顺达, 林殿阳, 等. 基于可调谐半导体激光吸收光谱的氧气浓度高灵敏度检测研究[J]. 中国光学(中英文),2023,16(1):151-157. doi: 10.37188/CO.2022-0029

    YANG SH H, QIAO SH D, LIN D Y, et al. Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy[J]. Chinese Optics, 2023, 16(1): 151-157. (in Chinese). doi: 10.37188/CO.2022-0029
    [16] 裴梓伊, 胡朋兵, 潘孙强, 等. TDLAS气体激光遥测高灵敏光电探测电路设计[J]. 中国光学(中英文),2024,17(1):198-208. doi: 10.37188/CO.2023-0107

    PEI Z Y, HU P B, PAN S Q, et al. Design of a highly sensitive photoelectric detection circuit for TDLAS gas laser telemetry[J]. Chinese Optics, 2024, 17(1): 198-208. (in Chinese). doi: 10.37188/CO.2023-0107
    [17] 李文军, 陈姗姗, 陈艳鹏, 等. 基于热重的煤热解反应动力学试验研究[J]. 中国煤炭,2020,46(3):84-89. doi: 10.3969/j.issn.1006-530X.2020.03.017

    LI W J, CHEN SH SH, CHEN Y P, et al. Experimental study on coal pyrolysis kinetics based on thermogravimetry analysis[J]. China Coal, 2020, 46(3): 84-89. (in Chinese). doi: 10.3969/j.issn.1006-530X.2020.03.017
    [18] 彭扬凡, 陈姗姗, 孙粉锦, 等. 基于热重法的大颗粒煤热解反应动力学[J]. 洁净煤技术,2021,27(6):128-133.

    PENG Y F, CHEN SH SH, SUN F J, et al. Investigation on the kinetics of pyrolysis reaction of large coal particles based on TGA[J]. Clean Coal Technology, 2021, 27(6): 128-133. (in Chinese).
    [19] LI CH ZH, TAN L L. Formation of NO x and SO x precursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and NH3 during pyrolysis[J]. Fuel, 2000, 79(15): 1899-1906. doi: 10.1016/S0016-2361(00)00008-9
    [20] 张肖阳, 周滨选, 安东海, 等. 升温速率对准东褐煤热解特性及煤焦孔隙结构的影响[J]. 煤炭学报,2019,44(2):604-610.

    ZHANG X Y, ZHOU B X, AN D H, et al. Effect of heating rate on pyrolysis characteristics and char structure of Zhundong lignite coal[J]. Journal of China Coal Society, 2019, 44(2): 604-610. (in Chinese).
    [21] TIAN B, QIAO Y Y, TIAN Y Y, et al. Investigation on the effect of particle size and heating rate on pyrolysis characteristics of a bituminous coal by TG–FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 376-386. doi: 10.1016/j.jaap.2016.08.020
    [22] WANG H W, DU W ZH, XI Y, et al. Non-isothermal thermogravimetric analysis study on the pyrolysis reaction kinetics of bituminous coal[J]. Chemical Engineering & Technology, 2022, 45(6): 1048-1057.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  32
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-11-11

目录

    /

    返回文章
    返回