留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快速反射镜恒偏差故障观测器设计

李智斌 潘嘉男 孙崇尚 吴佳彬

李智斌, 潘嘉男, 孙崇尚, 吴佳彬. 快速反射镜恒偏差故障观测器设计[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0136
引用本文: 李智斌, 潘嘉男, 孙崇尚, 吴佳彬. 快速反射镜恒偏差故障观测器设计[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0136
LI Zhi-bin, PAN Jia-nan, SUN Chong-shang, WU Jia-bin. Design of constant bias fault observer for fast steering mirrors[J]. Chinese Optics. doi: 10.37188/CO.2024-0136
Citation: LI Zhi-bin, PAN Jia-nan, SUN Chong-shang, WU Jia-bin. Design of constant bias fault observer for fast steering mirrors[J]. Chinese Optics. doi: 10.37188/CO.2024-0136

快速反射镜恒偏差故障观测器设计

cstr: 32171.14.CO.2024-0136
基金项目: 国家自然科学基金(No. U23A20336,No. 52227811);山东省自然科学基金(No. ZR2021QF140,No. ZR2021QF117,No. ZR2024MF133);青岛西海岸新区“一事一议”人才项目资助
详细信息
    作者简介:

    李智斌(1965—),男,四川巴中人,博士,教授,博士生导师,2003年于清华大学获得工程力学系一般力学专业博士学位,现任山东科技大学电气与自动化工程学院教授,主要从事复杂系统动力学建模与控制技术等方面的研究。E-mail:zhibin.li@sdust.edu.cn

    孙崇尚(1989—),男,山东枣庄人,博士,副教授,2016年于中国科学院长春光学精密机械与物理研究所获得博士学位,现任山东科技大学电气与自动化工程学院副教授,主要从事机器人、伺服控制等方面的研究。E-mail:sun2007cn@163.com

  • 中图分类号: TP394;TH691.9

Design of constant bias fault observer for fast steering mirrors

Funds: Supported by National Natural Science Foundation of China (No. U23A20336,No. 52227811); Natural Science Foundation of Shandong Province (No. ZR2021QF140,No. ZR2021QF117, No. ZR2024MF133); "One Matter, One Discussion" Talent Project of Qingdao West Coast New Area
More Information
    Corresponding author: sun2007cn@163.com
  • 摘要:

    快速反射镜的工作环境一般比较恶劣,容易受到振动冲击、温度变化等影响,导致故障。本文针对最为普遍的恒偏差故障,提出了一种基于线性矩阵不等式(linear matrix inequality, LMI)的故障观测器设计方法,旨在提高故障检测的可靠性,增强快速反射镜的稳定性以及抗干扰能力。首先,采用基于汉克尔(Hankel)矩阵的模型辨识方法得到了考虑耦合效应的两轴快速反射镜模型。然后,建立了快速反射镜系统的故障模型,采用基于LMI的方法对快速反射镜的故障观测器进行设计。最后,通过仿真与实验对该方法进行验证。结果表明,当快速反射镜的两轴发生执行器和传感器恒偏差故障时,基于黎卡提(Riccati)方程的故障观测器只能检测出其中一个轴的故障,基于LMI的故障观测器对X轴能在故障发生后0.1 s内检测出故障,对Y轴能在故障发生后0.06 s内检测出故障。上述结果表明本文设计的LMI故障观测器能够更加准确地实现对快速反射镜的故障检测。

     

  • 图 1  FSM的实物图

    Figure 1.  The physical diagram of the FSM

    图 2  考虑耦合效应的两轴FSM系统框图

    Figure 2.  Diagram of the two-axis FSM system considering coupling effects

    图 3  基于dSPACE的FSM实验平台

    Figure 3.  FSM experimental platform based on dSPACE

    图 4  辨识模型与实际系统频域响应特性曲线对比

    Figure 4.  Comparison of frequency responses between the identified model and the real systems

    图 5  故障观测器仿真模型

    Figure 5.  Simulation model of the fault observer

    图 6  FSM故障观测器原理框图

    Figure 6.  The principle diagram of the FSM fault observer

    图 7  传感器故障时基于Riccati的偏转角残差

    Figure 7.  The residuals of angle calculated by the Riccati when the sensor malfunctions

    图 8  传感器故障时基于Riccati的评价函数与阈值

    Figure 8.  The evaluation function and threshold calculated by the Riccati when the sensor malfunctions

    图 9  传感器故障时基于LMI的偏转角残差

    Figure 9.  The residuals of angle calculated by the LMI when the sensor malfunctions

    图 10  传感器故障时基于LMI的评价函数与阈值

    Figure 10.  The evaluation function and threshold by the LMI when the sensor malfunctions

    图 11  传感器和执行器同时故障时基于Riccati的偏转角残差

    Figure 11.  The residuals of angle calculated by the Riccati when both the sensor and the actuator malfunction

    图 12  传感器和执行器同时故障时,基于Riccati的评价函数与阈值

    Figure 12.  The evaluation function and threshold by the Riccati when both the sensor and the actuator malfunction

    图 13  传感器和执行器同时故障时,基于LMI的偏转角残差

    Figure 13.  The residuals of angle calculated by the LMI when both the sensor and the actuator malfunction

    图 14  传感器和执行器同时故障时基于LMI的评价函数与阈值

    Figure 14.  The evaluation function and threshold by the LMI when both the sensor and the actuator malfunction

    图 15  快速反射镜系统故障框图

    Figure 15.  Fault block diagram of the FSM system

    图 16  执行器、传感器故障时,基于Riccati的故障观测器得到的偏转角残差

    Figure 16.  The residuals of angle calculated by the Riccati when both sensor and actuator malfunction

    图 17  基于Riccati的评价函数与阈值

    Figure 17.  The evaluation function and threshold by the Riccati

    图 18  基于LMI的偏转角残差

    Figure 18.  Residual of deflection angle calculated by the LMI

    图 19  基于LMI的评价函数与阈值

    Figure 19.  The evaluation function and threshold by the LMI

  • [1] 高世杰, 吴佳彬, 刘永凯, 等. 微小卫星激光通信系统发展现状与趋势[J]. 中国光学,2020,13(6):1171-1181. doi: 10.37188/CO.2020-0033

    GAO SH J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181. (in Chinese). doi: 10.37188/CO.2020-0033
    [2] 沈宏海, 黄猛, 李嘉全, 等. 国外先进航空光电载荷的进展与关键技术分析[J]. 中国光学,2012,5(1):20-29.

    SHEN H H, HUANG M, LI J Q, et al. Recent progress in aerial electro-optic payloads and their key technologies[J]. Chinese Optics, 2012, 5(1): 20-29. (in Chinese).
    [3] 霍银龙, 杨飞, 王富国. 大口径光学望远镜拼接镜面关键技术综述[J]. 中国光学(中英文),2022,15(5):973-982. doi: 10.37188/CO.2022-0109

    HUO Y L, YANG F, WANG F G. Overview of key technologies for segmented mirrors of large-aperture optical telescopes[J]. Chinese Optics, 2022, 15(5): 973-982. (in Chinese). doi: 10.37188/CO.2022-0109
    [4] 周东华, 胡艳艳. 动态系统的故障诊断技术[J]. 自动化学报,2009,35(6):748-758. doi: 10.3724/SP.J.1004.2009.00748

    ZHOU D H, HU Y Y. Fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2009, 35(6): 748-758. (in Chinese). doi: 10.3724/SP.J.1004.2009.00748
    [5] 王红举, 杨文淑, 包启亮, 等. 快速反射镜传感器故障检测[J]. 光电工程,2016,43(3):46-51.

    WANG H G, YANG W SH, BAO Q L, et al. Sensor fault detection of a fast steering mirror[J]. Opto-Electronic Engineering, 2016, 43(3): 46-51. (in Chinese).
    [6] 钱华明, 富振铎, 宁秀丽, 等. 基于LMI的H-/H故障检测观测器设计[J]. 宇航学报,2012,33(12):1747-1756. doi: 10.3873/j.issn.1000-1328.2012.12.006

    QIAN H M, FU ZH D, NING X L, et al. Design of H-/H fault detection observer design based on LMI[J]. Journal of Astronautics, 2012, 33(12): 1747-1756. (in Chinese). doi: 10.3873/j.issn.1000-1328.2012.12.006
    [7] NEKOO S R, OLLERO A. A robust state-dependent Riccati equation controller with parameter uncertainty and matched disturbance[J]. Journal of the Franklin Institute, 2023, 360(18): 14584-14595. doi: 10.1016/j.jfranklin.2023.11.023
    [8] 王小丽, 宋红敏, 倪茂林. 一种基于LMI的鲁棒故障诊断滤波器设计[J]. 控制理论与应用,2009,26(5):550-554.

    WANG X L, SONG H M, NI M L, et al. The design of a robust fault-detection filter: the LMI approach[J]. Control Theory & Applications, 2009, 26(5): 550-554. (in Chinese).
    [9] 吴丽娜, 张迎春, 贾庆贤, 等. 基于LMI的H-/H故障检测观测器设计[J]. 系统工程与电子技术,2012,34(8):1675-1679.

    WU L N, ZHANG Y CH, JIA Q X, et al. LMI approach to H-/H fault detection observer design[J]. Systems Engineering and Electronics, 2012, 34(8): 1675-1679. (in Chinese).
    [10] 时晶晶, 姚佰栋, 鲁加国. 高速倾斜镜建模与传递函数辨识[J]. 红外与激光工程,2013,42(10):2748-2752. doi: 10.3969/j.issn.1007-2276.2013.10.029

    SHI J J, YAO B D, LU J G. Modeling and transfer function identification of FSM system[J]. Infrared and Laser Engineering, 2013, 42(10): 2748-2752. (in Chinese). doi: 10.3969/j.issn.1007-2276.2013.10.029
    [11] CHENG P, LIANG Y B. Model in frequency-domain identification of a fast steering mirror system based on levenberg-marquardt algorithm[C]. Proceedings of 2017 2nd International Conference on Cybernetics, Robotics and Control, IEEE, 2017: 177-202.
    [12] 方连伟, 史守峡, 蒋志勇. 柔性支撑快速反射镜伺服机构的参数辨识[J]. 红外与激光工程,2021,50(5):20200303. doi: 10.3788/IRLA20200303

    FANG L W, SHI SH X, JIANG ZH Y. Servo mechanism parameter identification of fast steering mirror based on flexible supports[J]. Infrared and Laser Engineering, 2021, 50(5): 20200303. (in Chinese). doi: 10.3788/IRLA20200303
    [13] 于淼, 刘建昌, 郭戈. 基于随机分布理论的递推子空间辨识[J]. 控制理论与应用,2021,38(9):1333-1340. doi: 10.7641/CTA.2021.00819

    YU M, LIU J CH, GUO G. Recursive subspace identification based on random distribution theory[J]. Control Theory & Applications, 2021, 38(9): 1333-1340. (in Chinese). doi: 10.7641/CTA.2021.00819
    [14] 闻成, 谭敏哲, 卢洁莹, 等. 具有柔性特性的机电伺服系统辨识[J]. 控制理论与应用,2023,40(4):663-672. doi: 10.7641/CTA.2021.10452

    WEN CH, TAN M ZH, LU J Y, et al. Identification of electromechanical servo systems with flexible characteristics[J]. Control Theory & Applications, 2023, 40(4): 663-672. (in Chinese). doi: 10.7641/CTA.2021.10452
    [15] 夏培培, 邓永停, 王志乾, 等. 2m望远镜消旋K镜转台的模型辨识[J]. 红外与激光工程,2018,47(3):0318001. doi: 10.3788/IRLA201847.0318001

    XIA P P, DENG Y T, WANG ZH Q, et al. Model identification for K mirror turntable of 2 m telescope[J]. Infrared and Laser Engineering, 2018, 47(3): 0318001. (in Chinese). doi: 10.3788/IRLA201847.0318001
    [16] 张建强,孙崇尚,吴佳彬,等. 激光通信快速反射镜系统辨识与平衡截断[J]. 控制理论与应用,2024,41(12):2315-2324.

    ZHANG J Q, SUN CH SH, WU J B, et al. Identification and balancing truncation of laser communication fast steering mirror system[J]. Control Theory and Applications, 2024, 41(12): 2315-2324. (in Chinese).
    [17] 吴斌, 于春梅, 李强. 过程工业故障诊断[M]. 北京: 科学出版社, 2012.

    WU B, YU CH M, LI Q. Troubleshooting Industrial Processes[M]. Beijing: Science Press, 2012. (in Chinese)
    [18] ZHANG J F, RAÏSSI T, LI Q, et al. Distributed adaptive event-triggered fault detection filter of positive semi-Markovian jump systems[J]. Nonlinear Analysis: Hybrid Systems, 2024, 51: 101441. doi: 10.1016/j.nahs.2023.101441
    [19] 李禹希, 张刘, 陈思桐, 等. 基于自抗扰算法的光电跟踪伺服控制方法研究[J]. 中国光学,2022,15(3):562-567. doi: 10.37188/CO.2022-0090

    LI Y X, ZHANG L, CHEN S T, et al. Photoelectric tracking servo control method based on active disturbance rejection algorithm[J]. Chinese Optics, 2022, 15(3): 562-567. (in Chinese). doi: 10.37188/CO.2022-0090
    [20] 白盼鑫, 张恒, 王哲, 等. 基于动态事件的水面无人船故障检测[J]. 控制工程,2023,30(12):2192-2198.

    BAI P X, ZHANG H, WANG ZH, et al. Dynamic event-based fault detection for unmanned surface vehicles[J]. Control Engineering of China, 2023, 30(12): 2192-2198. (in Chinese).
  • 加载中
图(19)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  59
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-22
  • 修回日期:  2024-08-27
  • 录用日期:  2024-09-30
  • 网络出版日期:  2024-10-16

目录

    /

    返回文章
    返回