留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扫描干涉曝光系统中双频激光干涉测量误差建模与分析

王新宇 李文昊 王玮 刘兆武 姜珊 周文渊 巴音贺希格

王新宇, 李文昊, 王玮, 刘兆武, 姜珊, 周文渊, 巴音贺希格. 扫描干涉曝光系统中双频激光干涉测量误差建模与分析[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0149
引用本文: 王新宇, 李文昊, 王玮, 刘兆武, 姜珊, 周文渊, 巴音贺希格. 扫描干涉曝光系统中双频激光干涉测量误差建模与分析[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0149
WANG Xin-yu, LI Wen-hao, WANG Wei, LIU Zhao-wu, JIANG Shan, ZHOU Wen-yuan, Bayanheshig. Error modeling and analysis of dual-frequency laser interferometry in scanning beam interference lithography system[J]. Chinese Optics. doi: 10.37188/CO.2024-0149
Citation: WANG Xin-yu, LI Wen-hao, WANG Wei, LIU Zhao-wu, JIANG Shan, ZHOU Wen-yuan, Bayanheshig. Error modeling and analysis of dual-frequency laser interferometry in scanning beam interference lithography system[J]. Chinese Optics. doi: 10.37188/CO.2024-0149

扫描干涉曝光系统中双频激光干涉测量误差建模与分析

cstr: 32171.14.CO.2024-0149
基金项目: 国家重点研发计划资助项目(No. 2022YFB3606100);国家自然科学基金资助项目(No. U21A20509,52275554)
详细信息
    作者简介:

    王新宇(1998—),男,吉林白城人,硕士研究生,2021年于长春理工大学获得学士学位,主要从事精密位移测量技术。E-mail:1589588853@qq.com

    李文昊(1980—),男,内蒙古赤峰人,博士,研究员,2002年于陕西科技大学获学士学位,2008年于中国科学院长春光学精密机械与物理研究所获博士学位,主要研究方向为平面、凹面全息光栅的理论设计及光栅精密位移测量技术。E-mail:liwh@ciomp.ac.cn

    姜 珊(1988—),女,河北邯郸人,博士,2010年于哈尔滨工业大学获得学士学位,2015年于中国科学院长春光学精密机械与物理研究所获博士学位,主要从事全息曝光系统的研究。E-mail:jiangshan0122@126.com

  • 中图分类号: TP394.1;TH691.9

Error modeling and analysis of dual-frequency laser interferometry in scanning beam interference lithography system

Funds: Supported by National Key R & D Program of China (No. 2022YFB3606100); National Natural Science Foundation of China (NSFC) (No. U21A20509,52275554)
More Information
  • 摘要:

    扫描干涉场曝光技术(SBIL)是制作单体大面积高精度光栅的有效途径,采用双频激光干涉仪反馈工作台位置进行干涉条纹的精确拼接,测量误差会不可避免的引入光栅刻线误差,降低光栅衍射波前质量。针对工作台位移测量误差,分析了激光干涉仪自身结构因素引起的本征误差,提出了复杂环境下激光干涉仪本征误差指标评价方法;建立了实际工况与经验公式相结合的死程误差和测量光程变化误差理论模型;通过构建平移和旋转算子,推导了工作台任意点旋转和平移之间的耦合关系,模拟了不同工作台姿态滚转角下的测量误差。进行了位移误差实验和光栅扫描曝光实验,实验结果表明,位移误差与理论计算结果一致,制作200 mm×200 mm光栅的衍射波前为0.278λ@632.8 nm。本文的分析方法贯通了光栅衍射波前与测量误差的传递链路,为制作米级尺寸纳米精度全息光栅奠定了理论和实验基础。

     

  • 图 1  扫描干涉场曝光系统原理图

    Figure 1.  diagram of scanning interferometric lithography system

    图 2  双频激光干涉测量系统原理图

    Figure 2.  Dual-frequency laser interferometry system schematic diagram

    图 3  死程误差示意图

    Figure 3.  Schematic diagram of dead path error

    图 4  空气折射率随温度和压强变化曲线

    Figure 4.  Variation curve of air refractive index with temperature and pressure

    图 5  滚转角对激光干涉仪测量精度的影响 (a) 理想情况下,x轴测量镜测量点Q;(b) 工作台在原点o处旋转α角;(c) 工作台在标记点Q旋转α角。

    Figure 5.  The impact of roll angle on the measurement accuracy of laser interferometers. (a) Measuring point Q when the workbench is not rotating. (b) Workbench rotates α at origin O. (c) Workbench rotates α around point Q.

    图 6  工作台滚转角误差图

    Figure 6.  Workbench roll angle error diagram

    图 7  不同旋转角下测量轴偏移量对测量误差

    Figure 7.  Measurement axis offset vs. measurement error at different rotation angles

    图 8  非线性误差测量原理图

    Figure 8.  Schematic diagram of nonlinear error measurement

    图 9  非线性误差

    Figure 9.  Nonlinear error

    图 10  Zygo干涉仪检测结果

    Figure 10.  Zygo Interferometer test results

    图 11  工作高度处30 mm宽度子口径面形数据

    Figure 11.  Mirror shape curve is measured at working height

    图 12  3 h内实验室环境变化

    Figure 12.  3 h changes of laboratory environment

    图 13  激光干涉仪数据与环境位移数据对比

    Figure 13.  Wavelength tracker data versus environmental data

    图 14  稳定性实验装置图

    Figure 14.  Stability test device diagram

    图 15  激光干涉仪与光栅干涉仪稳定性对比

    Figure 15.  Stability comparison between laser interferometer and grating interferometer

    图 16  光栅干涉仪与激光干涉仪差值频谱分析

    Figure 16.  Spectrum analysis of difference between grating interferometer and laser interferometer

    图 17  工作台滚转角测量原理

    Figure 17.  Measuring principle of table roll Angle

    图 18  工作台滚转角测试结果

    Figure 18.  Test results of table roll Angle

    图 19  光栅衍射波前

    Figure 19.  Grating diffraction wavefront

    图 20  200 mm×200 mm×20 mm光栅实物图

    Figure 20.  Real picture of 200 mm×200 mm×20 mm grating

    表  1  空气折射率和环境影响系数

    Table  1.   Values of laboratory environmental parameters

    参数 数值
    标准空气折射率 1.000273
    激光器真空波长/nm 632.991528
    空气波长/nm 632.818663
    温度敏感性/°C−1 −1.004×10−6
    湿度敏感性/(%RH)−1 −6.401×10−9
    压强敏感性/Pa−1 0.200×10−8
    下载: 导出CSV

    表  2  测量系统精度

    Table  2.   Measurement system error

    误差项误差值(nm)
    激光器波长稳定性8.00
    电子学误差0.15
    光学非线性误差4.40
    光学温度漂移误差0.08
    测量镜面形误差51.64
    死程误差79.73
    光程变化误差12.80
    工作台姿态误差18.00
    RSS97.95
    下载: 导出CSV
  • [1] 罗凯元, 郑文炜, 杨霖. 基于激光干涉的多轴运动平台垂直度测量[J]. 光学 精密工程,2024,32(17):2654-2662. doi: 10.37188/OPE.20243217.2654

    LUO K Y, ZHENG W W, YANG L. Perpendicularity measurement of multi-axis motion platform based on laser interferometry[J]. Optics and Precision Engineering, 2024, 32(17): 2654-2662. doi: 10.37188/OPE.20243217.2654
    [2] 李星辉, 崔璨. 光栅干涉精密纳米测量技术[J]. 光学 精密工程,2024,32(17):2591-2611. doi: 10.37188/OPE.20243217.2591

    LI X H, CUI C. Grating interferometric precision nanometric measurement technology[J]. Optics and Precision Engineering, 2024, 32(17): 2591-2611. doi: 10.37188/OPE.20243217.2591
    [3] 赵思霖, 穆全全, 李大禹. 基于液晶光栅的大视场红外凝视成像系统设计[J]. 光学 精密工程,2024,32(12):1824-1835. doi: 10.37188/OPE.20243212.1824

    ZHAO S L, MU Q Q, LI D Y. A large field of view infrared staring imaging system based on liquid crystal grating[J]. Optics and Precision Engineering, 2024, 32(12): 1824-1835. doi: 10.37188/OPE.20243212.1824
    [4] HAN Y X, LI ZH Y, ZHANG Y B, et al. 400nm ultra-broadband gratings for near-single-cycle 100 Petawatt lasers[J]. Nature Communications, 2023, 14(1): 3632. doi: 10.1038/s41467-023-39164-3
    [5] WANG R X, ANSARI M A, AHMED H, et al. Compact multi-foci metalens spectrometer[J]. Light: Science & Applications, 2023, 12(1): 103.
    [6] WANG Y F, XU X, DAI Z R, et al. Frequency-swept feedback interferometry for noncooperative-target ranging with a stand-off distance of several hundred meters[J]. PhotoniX, 2022, 3(1): 21. doi: 10.1186/s43074-022-00067-z
    [7] LI Y B, JIANG SH, CHEN X SH, et al. Accurate measurement and adjustment method for interference fringe direction in a scanning beam interference lithography system[J]. Optics Express, 2023, 31(17): 28145-28160. doi: 10.1364/OE.485488
    [8] KONKOL P T. Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions[D]. Cambridge: Massachusetts Institute of Technology, 2003.
    [9] 王玮, 巴音贺希格, 宋莹, 等. 扫描干涉场曝光光束自动对准及其收敛性分析[J]. 中国激光,2016,43(12):1205001. doi: 10.3788/CJL201643.1205001

    WANG W, BAYANHESHIG, SONG Y, et al. Beam alignment and convergence analysis of scanning beam interference lithography system[J]. Chinese Journal of Lasers, 2016, 43(12): 1205001. (in Chinese). doi: 10.3788/CJL201643.1205001
    [10] 姜珊, 巴音贺希格, 李文昊, 等. 扫描干涉场曝光系统中周期设定对曝光刻线相位的影响[J]. 光学学报,2014,34(9):0905003. doi: 10.3788/AOS201434.0905003

    JIANG SH, BAYANHESHIG, LI W H, et al. Effect of period setting value on printed phase in scanning beam interference lithography system[J]. Acta Optica Sinica, 2014, 34(9): 0905003. (in Chinese). doi: 10.3788/AOS201434.0905003
    [11] CHEN C G. Beam alignment and image metrology for scanning beam interference lithography: fabricating gratings with nanometer phase accuracy[D]. Cambridge: Massachusetts Institute of Technology, 2003.
    [12] 鲁森, 杨开明, 朱煜, 等. 用于扫描干涉场曝光的超精密微动台设计与控制[J]. 光学学报,2017,37(10):1012006. doi: 10.3788/AOS201737.1012006

    LU S, YANG K M, ZHU Y, et al. Design and control of ultra-precision fine positioning stage for scanning beam interference lithography[J]. Acta Optica Sinica, 2017, 37(10): 1012006. (in Chinese). doi: 10.3788/AOS201737.1012006
    [13] 刘兆武, 李文昊, 王敬开, 等. 纳米精度二维工作台测量镜的面形误差在线检测[J]. 光学 精密工程,2016,24(9):2134-2141. doi: 10.3788/OPE.20162409.2134

    LIU ZH W, LI W H, WANG J K, et al. Online detection of profile deviation for nano precision 2-D stage mirror[J]. Optics and Precision Engineering, 2016, 24(9): 2134-2141. (in Chinese). doi: 10.3788/OPE.20162409.2134
    [14] LIU ZH W, YANG H, LI Y B, et al. Active control technology of a diffraction grating wavefront by scanning beam interference lithography[J]. Optics Express, 2021, 29(23): 37066-37074. doi: 10.1364/OE.437593
    [15] LIU ZH W, LI W H, BAYANHESHIG, et al. Two-color heterodyne laser interferometry for long-distance stage measurement with correction of uncertainties in measured optical distances[J]. Scientific Reports, 2017, 7: 8173. doi: 10.1038/s41598-017-07741-4
    [16] HORI Y, GONDA S, BITOU Y, et al. Periodic error evaluation system for linear encoders using a homodyne laser interferometer with 10 picometer uncertainty[J]. Precision Engineering, 2018, 51: 388-392. doi: 10.1016/j.precisioneng.2017.09.009
    [17] YUAN G H, ZHELUDEV N I. Detecting nanometric displacements with optical ruler metrology[J]. Science, 2019, 364(6442): 771-775. doi: 10.1126/science.aaw7840
    [18] YIN Y F, LIU ZH W, JIANG SH, et al. High-precision 2D grating displacement measurement system based on double-spatial heterodyne optical path interleaving[J]. Optics and Lasers in Engineering, 2022, 158: 107167. doi: 10.1016/j.optlaseng.2022.107167
    [19] LV Q, LIU ZH W, WANG W, et al. Fast method to detect and calculate displacement errors in a Littrow grating-based interferometer[J]. Applied Optics, 2019, 58(12): 3193-3199. doi: 10.1364/AO.58.003193
    [20] LIU L, LIU ZH W, JIANG SH, et al. Polarization modulated grating interferometer by conical diffraction[J]. Optics Express, 2022, 30(2): 689-699. doi: 10.1364/OE.438490
    [21] BAI Y, HU P C, LU Y F, et al. A six-axis heterodyne interferometer system for the joule balance[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(6): 1579-1585. doi: 10.1109/TIM.2016.2634758
    [22] 谈宜东, 徐欣, 张书练. 激光干涉精密测量与应用[J]. 中国激光,2021,48(15):1504001. doi: 10.3788/CJL202148.1504001

    TAN Y D, XU X, ZHANG SH L. Precision measurement and applications of laser interferometry[J]. Chinese Journal of Lasers, 2021, 48(15): 1504001. (in Chinese). doi: 10.3788/CJL202148.1504001
    [23] 林荣炜, 程真英, 何亚雄, 等. XY工作台六自由度误差在线测量和补偿[J]. 光学 精密工程,2023,31(12):1761-1773. doi: 10.37188/OPE.20233112.1761

    LIN R W, CHENG ZH Y, HE Y X, et al. On-line six-degree-of-freedom errors measurement and compensation for XY stages[J]. Optics and Precision Engineering, 2023, 31(12): 1761-1773. (in Chinese). doi: 10.37188/OPE.20233112.1761
    [24] 吴炳阳, 于晋龙, 王菊, 等. 小型化空气折射率测量装置的精度修正[J]. 激光与光电子学进展,2018,55(4):040102.

    WU B Y, YU J L, WANG J, et al. Accuracy correction of miniaturization device for air refractive index measurement[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040102. (in Chinese).
    [25] 宋磊. 光刻机工件台六自由度测量系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    SONG L. Research on 6-degree-of-freedom measurement system of wafer stage[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese).
    [26] 宋莹. 全息光栅曝光系统干涉条纹静态及动态相位锁定技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2014.

    SONG Y. Research on the interference fringe static and dynamic phase-locking technology in the lithography system of the holographic grating[D]. Changchun: Graduate School of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics), 2014. (in Chinese).
    [27] BIRCH K P, DOWNS M J. An updated Edlén equation for the refractive index of air[J]. Metrologia, 1993, 30(3): 155-162. doi: 10.1088/0026-1394/30/3/004
    [28] BIRCH K P, DOWNS M J. Correction to the updated Edlén equation for the refractive index of air[J]. Metrologia, 1994, 31(4): 315-316. doi: 10.1088/0026-1394/31/4/006
    [29] YANG Y, DENG Y, TAN Y D, et al. Nonlinear error analysis and experimental measurement of Birefringence-Zeeman dual-frequency laser interferometer[J]. Optics Communications, 2019, 436: 264-268. doi: 10.1016/j.optcom.2018.12.030
    [30] YOKOZEKI S, SAWA S. Interferometric testing of gratings using moiré method[J]. Japanese Journal of Applied Physics, 1975, 14(S1): 465-470. doi: 10.7567/JJAPS.14S1.465
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  37
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-28
  • 录用日期:  2024-11-07
  • 网络出版日期:  2024-12-05

目录

    /

    返回文章
    返回