-
摘要:
受航天器体积和重量限制,航天星载遥感探测系统难以兼顾大口径、高分辨率以及高光谱信息同步获取的需求。针对这一问题,本文提出一种新型的高光谱成像系统,采用主次镜共用、多通道分离同轴五反光路设计,结合Offner凸面光栅光谱仪分光技术,实现从可见到长波红外的高光谱探测。该系统主镜口径为
1000 mm,在500 km轨高下,可见和短波、中波、长波、全色波段空间分辨率分别优于2 m、3 m、6 m和1 m。且系统全视场可达到2.3°,满足20 km幅宽的探测要求。为提高系统的像差与畸变校正能力,设计中引入高阶非球面,形成像方远心光路,实现了望远镜与光谱仪的光瞳匹配。此外,本文还将光谱仪模块整体放入冷箱制冷,从源头上抑制光机结构背景辐射对成像质量的影响。最终设计结果表明,该系统成像质量优良、布局简单且体积轻便,而且能够实现全谱段高光谱信息的同步获取,可广泛应用于星载对地探测成像等领域。Abstract:Due to spacecraft’s volume and weight constraints, it is challenging to simultaneously obtain large aperture, high resolution, and hyperspectral information in spaceborne remote sensing systems. We propose a novel hyperspectral imaging system that utilizes a shared primary and secondary mirror design and a coaxial five-mirror optical path for multi-channel separation. By integrating Offner convex grating spectroscopy, the system enables hyperspectral detection from the visible to the long-wave infrared spectrum. Design results indicate that with a primary mirror diameter of
1000 mm at an altitude of 500 km, the spatial resolution in the visible and short-wave bands exceeds 2 m, in the mid-wave band exceeds 3 m, in the long-wave band exceeds 6 m, and the panchromatic resolution is better than 1 m. The system achieves a full field of view of 2.3°, accommodating a swath width of 20 km for detection. To enhance the system's aberration and distortion correction capabilities, high-order aspheric elements are incorporated to create a telecentric optical path, ensuring optimal matching between the telescope and the spectrometer. Furthermore, we propose housing the spectrometer module in a cooling chamber to effectively mitigate the impact of background radiation from the optical structure on image quality. The final design demonstrates excellent imaging quality, a simple layout, and a compact structure, enabling the simultaneous acquisition of high spectral information across the entire spectrum. This system has broad applications in satellite-based earth observation and imaging.-
Key words:
- spaceborne /
- hyperspectral /
- full-spectrum /
- convex grating spectrometer /
- background radiation
-
表 1 光学系统的主要技术指标
Table 1. Key technical specifications of the optical system
类别 波段
/μm像元
尺寸
/μm焦距
/mmF数 空间
分辨率
/m幅宽
/km视场
角
/(°)像元数 全色 0.4-0.8 7.5 3750 3.75 1 20000 可见 0.4-0.9 15.0 3750 3.75 2 10000 短波 0.9-2.5 15.0 3750 3.75 2 20 2.3 10000 中波 3.5-5.0 15.0 2500 2.50 3 6667 长波 8.0-12.5 30.0 2500 2.50 6 3334 表 2 各谱段光谱仪参数
Table 2. Structural parameters of Offner spectrometer in each spectral band
类别 可见 短波 中波 长波 光谱分辨率/nm 10 20 40 80 波段数 50 80 37 56 像元尺寸/μm 15 15 15 30 光谱色散/mm 0.75 1.20 0.56 1.68 探测器规模 2048×256 2048×256 2048×256 1024 ×256光谱仪数量 5 5 4 4 狭缝/mm 30×5 30×5 25×4 25×4 相对孔径 0.13 0.13 0.20 0.20 表 3 光谱仪公差设置
Table 3. Tolerance setting for spectrometer
类别 反射镜M1 光栅 反射镜M2 曲率半径/mm ±0.01 ±0.01 ±0.01 厚度/mm ±0.01 ±0.005 ±0.01 XY偏心/mm ±0.01 - ±0.01 XY倾斜/° ±0.005 - ±0.005 S+A不规则度/光圈 ±0.5 - ±0.5 -
[1] LULLA K, NELLIS M D, RUNDQUIST B, et al. Mission to earth: LANDSAT 9 will continue to view the world[J]. Geocarto International, 2021, 36(20): 2261-2263. doi: 10.1080/10106049.2021.1991634 [2] WAHBALLAH W A, EL-TOHAMY F, BAZAN T M. A survey and trade-off-study for optical remote sensing satellite camera design[C]. 2020 12th International Conference on Electrical Engineering, IEEE, 2020: 298-305, doi: 10.1109/ICEENG45378.2020.9171752. [3] MÜCKE M, SANG B, HEIDER B, et al. EnMAP: hyperspectral imager (HSI) for Earth observation: current status[J]. Proceedings of SPIE, 2019, 11180: 1118067. [4] POLZ L, SERDYUCHENKO A, LETTNER M, et al. Setups for alignment and on-ground calibration and characterization of the EnMAP hyperspectral imager[J]. Proceedings of SPIE, 2021, 11852: 118526B. [5] LOIZZO R, GUARINI R, LONGO F, et al. Prisma: the Italian hyperspectral mission[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2018: 175-178, doi: 10.1109/IGARSS.2018.8518512. [6] TANII J, IWASAKI A, KAWASHIMA T, et al. Results of evaluation model of Hyperspectral Imager Suite (HISUI)[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2012: 131-134. [7] 秦凯玲, 程宇峰, 王密, 等. 高分五号卫星全谱段光谱成像仪在轨几何定标方法及精度验证[J]. 上海航天,2019,36(S):210-218. doi: 10.19328/j.cnki.1006-1630.2019.S.032QIN K L, CHENG Y F, WANG M, et al. Geometric calibration and precision verification for GF-5 satellite VIMS camera[J]. Aerospace Shanghai, 2019, 36(S): 210-218. doi: 10.19328/j.cnki.1006-1630.2019.S.032 [8] 赵艳华, 戴立群, 白绍竣, 等. 全谱段光谱成像仪系统设计及实现[J]. 航天返回与遥感,2018,39(3):38-50.ZHAO Y H, DAI L Q, BAI SH J, et al. Design and implementation of full-spectrum spectral imager system[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(3): 38-50. (in Chinese). [9] 夏天, 严薇, 赵英芬, 等. 资源一号02D卫星数据应用[J]. 卫星应用,2021(11):54-60.XIA T, YAN W, ZHAO Y F, et al. Application of ZY-1 02D satellite data[J]. Satellite Applications, 2021(11): 54-60. (in Chinese). [10] 陈飚. 资源一号02E星[J]. 卫星应用,2022(2):70.CHEN B. ZY-1 02E satellite[J]. Satellite Applications, 2022(2): 70. (in Chinese). [11] 李先怡, 范海生, 潘申林, 等. 珠海一号高光谱卫星数据及应用概况[J]. 卫星应用,2019(8):12-18. doi: 10.3969/j.issn.1674-9030.2019.08.005LI X Y, FAN H S, PAN S L, et al. Data and application of Zhuhai-1 hyperspectral satellite[J]. Satellite Application, 2019(8): 12-18. doi: 10.3969/j.issn.1674-9030.2019.08.005 [12] 刘银年, 孙德新, 胡晓宁, 等. 高分五号可见短波红外高光谱相机设计与研制[J]. 遥感学报,2020,24(4):333-344.LIU Y N, SUN D X, HU X N, et al. Development of visible and short-wave infrared hyperspectral imager onboard GF-5 satellite[J]. Journal of Remote Sensing (Chinese), 2020, 24(4): 333-344. (in Chinese). [13] 胡枫, 丁纬, 阳结根, 等. 超短焦水下广角监控镜头的设计与分析[J]. 激光与光电子学进展,2023,60(21):2122002.HU F, DING W, YANG J G, et al. Design and analysis of ultra-short focal underwater wide angle monitoring lens[J]. Laser & Optoelectronics Progress, 2023, 60(21): 2122002. (in Chinese). [14] 姜海勇, 王义坤, 韩贵丞, 等. 中波红外相机光机结构背景辐射影响研究[J]. 激光与红外,2016,46(9):1102-1105. doi: 10.3969/j.issn.1001-5078.2016.09.015JIANG H Y, WANG Y K, HAN G CH, et al. Influence of optical-mechanical structure background radiation in MWIR camera[J]. Laser & Infrared, 2016, 46(9): 1102-1105. (in Chinese). doi: 10.3969/j.issn.1001-5078.2016.09.015 [15] 马健, 张军强, 吴从均, 等. 全谱段高光谱成像仪光学系统设计[J]. 光学学报,2022,42(23):2322001. doi: 10.3788/AOS202242.2322001MA J, ZHANG J Q, WU C J, et al. Optical system design of full-spectrum hyperspectral imaging spectrometer[J]. Acta Optica Sinica, 2022, 42(23): 2322001. (in Chinese). doi: 10.3788/AOS202242.2322001 [16] 贾文波, 秦天翔, 黄蕴涵, 等. 红外双波段成像光谱仪光学系统的设计与分析[J]. 中国激光,2021,48(23):2311002. doi: 10.3788/CJL202148.2311002JIA W B, QIN T X, HUANG Y H, et al. Design and analysis of optical system of an infrared dual-band imaging spectrometer[J]. Chinese Journal of Lasers, 2021, 48(23): 2311002. (in Chinese). doi: 10.3788/CJL202148.2311002 [17] 刘玉娟, 崔继承, 巴音贺希格, 等. 凸面光栅成像光谱仪的研制与应用[J]. 光学 精密工程,2012,20(1):52-57. doi: 10.3788/OPE.20122001.0052LIU Y J, CUI J CH, BAYANHESHIG, et al. Design and application of imaging spectrometer with convex grating[J]. Optics and Precision Engineering, 2012, 20(1): 52-57. (in Chinese). doi: 10.3788/OPE.20122001.0052 -