-
摘要:
为了实现高精度、高可靠性的动态场景模拟,设计了一套短波中波多波段折反射式共口径光学系统。该系统结合了反射、折射和共口径光路的优势,分为主光学系统、短波光学系统和中波光学系统独立设计,根据理论计算得到光学系统的初始结构,再通过光学设计软件对光学参数进一步细化,最后,按照光瞳匹配原则,组合各分系统,并对系统的成像质量作进一步优化设计,通过调制传递函数(Modulation Transfer Function,MTF)和畸变等指标的仿真验证了系统设计的合理性。所设计的短波光学系统视场角为±0.107°、焦距
2500 mm、入瞳尺寸300 mm,MTF达到衍射极限,畸变小于0.3%;中波光学系统的视场角为±0.65°、焦距750 mm、入瞳尺寸300 mm,MTF接近衍射极限,畸变小于1%。该系统成像质量好,体积小,实用性强,在光电跟瞄和空间探测等领域具有较大应用潜力。Abstract:In order to simulate dynamic scenes with high accuracy and high reliability, a short-wave infrared (SWIR) and mid-wave infrared (MWIR) multiband catadioptric common-aperture optical system is designed. The system combines the advantages of reflection, refraction and common-aperture optical path, and is independently designed into the main optical system, short-wave optical system and mid-wave optical system. The initial structure of the optical system is obtained according to theoretical calculation, and the optical parameters are further detailed by optical design software. Finally, according to the principle of pupil matching, the sub-systems are combined. The image quality of the system is further optimized and the rationality of the system design is verified by the simulation of modulation transfer function (MTF) and distortion. The designed short-wave optical system has a field angle of ±0.107°, a focal length of 2500mm, an entry pupil size of 300mm, MTF reaches the diffraction limit, and the distortion is less than 0.3%. The field angle of the mid-wave optical system is ±0.65°, the focal length is 750mm, the entry pupil size is 300mm, the MTF is close to the diffraction limit, and the distortion is less than 1%. The system has good image quality, small size and strong practicability, and has great application potential in the field of photoelectric tracking and space detection.
-
Key words:
- scene simulator /
- optical design /
- SWIR/MWIR imaging /
- common-aperture optical system
-
表 1 折反射式共口径光学系统主要参数
Table 1. Main parameters of catadioptric common-aperture optical system
Num. Specification Short-wave system Mid-wave system 1 Wave band/ μm 1.0-1.7 3.7-4.8 2 Channels 1 3.7-4.0,4.1-4.35,
4.35-4.6,4.55-4.83 FOV/ω ±0.107° ±0.65° 4 Focus/mm 2500 750 5 Entrance PD/mm 300 300 6 Exit PD/mm 1300 1300 7 Image size / The same size/4 8 Distortion ≤0.3% ≤1% 注:Entrance PD= Entrance Pupil Diameter,入瞳尺寸;Exit PD=Exit Pupil diameter,出瞳距离。 表 2 主系统光学设计数据
Table 2. Main system optical design data
Mirror
Num.Curve radius
/mmDistance
/mmSemi-diameter
/mmOff-axis
/mm1 − 1500 −900 170 300 2 300 40 −58 表 3 中波主系统光学设计数据
Table 3. Mid-wave main system optical design data
Mirror
Num.Curve radius
/mmDistance
/mmSemi-diameter
/mmOff-axis
/mm1 − 1500.00 −900 170.00 300 2 300.00 40.00 −58 3 207.93 19 33.33 KBR 4 −128.33 0.50 33.10 5 −754.76 10 32.36 SILICON 6 776.51 0.50 32.13 7 234.00 20 32.19 KBR 8 −89.34 0 31.84 9 −89.34 17.20 31.84 GAAS 10 −148.50 200 35.36 表 4 短波后端系统的光学参数
Table 4. Optical parameters of short-wave back-end system
Num. Specification Short-wave system 1 Wave band/ μm 1.0-1.7 2 FOV/ω(°) ±0.54 3 Focus/mm 500 4 Entrance PD/mm 60 5 Image size / 6 Distortion ≤0.3% 表 5 短波后端光学系统设计参数
Table 5. Short-wave back-end optical system design parameters
Mirror
Num.Curve radius
/mmDistance
/mmSemi-diameter
/mmMaterials 1 229.09 20 50.61 H-LAF55 2 −192.78 4.31 49.90 3 −177.10 12 48.22 H-LAF50B 4 − 1950.66 6.70 46.73 5 −533.78 11 45.87 H-ZF88GT 6 476.42 35.99 45.19 7 − 4768.94 10 45.16 H-LAF55 8 −329.67 436.70 45.19 表 6 中波后端系统的光学参数
Table 6. Optical parameters of mid-wave back-end system
Num. Specification Mid-wave system 1 Wave band/ μm 3.7-4.8 2 FOV/ω ±3.23° 3 Focus/mm 150 4 Entrance PD 60 5 Image size The same size/4 6 Distortion ≤1% 表 7 中波后端光学系统设计参数
Table 7. Mid-wave back-end optical system design parameters
Mirror
Num.Curve radius
/mmDistance
/mmSemi-diameter
/mmMaterials 1 168.31 29.02 47.50 SILICON 2 229.17 9.64 42.54 3 6736.72 15.00 41.43 GERMANIUM 4 773.91 102.20 40.61 5 820.84 26.25 35.63 SILICON 6 −330.43 7.58 34.56 7 −214.63 18.00 31.30 GERMANIUM 8 −446.58 0.10 31.49 9 79.49 22.50 30.22 SILICON 10 69.43 230.28 23.24 表 8 加工与装调公差
Table 8. Machining and fitting tolerances
Num. Tolerance classification Tolerance value 1 Aperture 2 2 Thickness (spacing)/mm 0.02 3 Refractive index 0.0003 4 Dispersion coefficient 0.005 5 Local aperture 0.2 6 Single-mirror tilt/(′) 1 -
[1] 顾航硕, 王凌云, 李光茜. 红外双波段景象模拟器光学系统设计[J]. 长春理工大学学报(自然科学版),2022,45(3):41-47.GU H SH, WANG L Y, LI G X. Optical design of MW/LW infrared dual-bands scene simulation system[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2022, 45(3): 41-47. (in Chinese). [2] 李卓, 高彦泽, 张金英. 多谱段复杂红外场景模拟技术[J]. 光学学报,2023,43(15):1511002. doi: 10.3788/AOS230756LI ZH, GAO Y Z, ZHANG J Y. Multi-spectral complex infrared scene projection technology[J]. Acta Optica Sinica, 2023, 43(15): 1511002. (in Chinese). doi: 10.3788/AOS230756 [3] 李卓, 叶宗民, 孙保杰, 等. 3.7~4.8 μm红外二次成像折反射式光学系统设计[J]. 红外技术,2021,43(12):1193-1196.LI ZH, YE Z M, SUN B J, et al. Design of a 3.7~4.8 μm catadioptric secondary imaging MWIR optical system[J]. Infrared Technology, 2021, 43(12): 1193-1196. (in Chinese). [4] 王超, 曲贺盟, 管海军, 等. 高数值孔径宽谱段折反射式物镜设计[J]. 光学学报,2023,43(19):1922002. doi: 10.3788/AOS230689WANG CH, QU H M, GUAN H J, et al. Design of catadioptric objective lens with hyper numerical aperture and wide spectral band[J]. Acta Optica Sinica, 2023, 43(19): 1922002. (in Chinese). doi: 10.3788/AOS230689 [5] FOADI R F, AHMED A K. Designing Cassegrain telescope system with best obscuration ratio of secondary mirror[J]. Iraqi Journal of Science, 2023, 64(12): 6638-6647. [6] 李艳杰, 金光, 钟兴, 等. 将成像光学系统用于激光发射的设计与分析[J]. 红外与激光工程,2015,44(11):3373-3378.LI Y J, JIN G, ZHONG X, et al. Design and analysis of using imaging optical system as laser transmitting antenna[J]. Infrared and Laser Engineering, 2015, 44(11): 3373-3378. (in Chinese). [7] 杨曼曼. 可见/红外多波段共口径变焦光学系统设计[D]. 西安: 西安工业大学, 2021.YANG M M. Visible/infrared multi-band co-aperture zoom system design[D]. Xi’an: Xi’an Technological University, 2021. (in Chinese). [8] 金光, 李艳杰, 钟兴, 等. 空间成像与激光通信共口径光学系统设计[J]. 光学 精密工程,2014,22(8):2067-2074. doi: 10.3788/OPE.20142208.2067JIN G, LI Y J, ZHONG X, et al. Design of co-aperture optical system for space imaging and laser communication[J]. Optics and Precision Engineering, 2014, 22(8): 2067-2074. (in Chinese). doi: 10.3788/OPE.20142208.2067 [9] 秦子长, 任成明, 戚允升, 等. 小型高分辨率空间相机光学系统低误差敏感度设计[J]. 红外与激光工程,2022,51(10):20220365. doi: 10.3788/IRLA20220365QIN Z CH, REN CH M, QI Y SH, et al. Low error-sensitive design of small-sized high-resolution space camera optical system[J]. Infrared and Laser Engineering, 2022, 51(10): 20220365. (in Chinese). doi: 10.3788/IRLA20220365 [10] 郭占利. 可见/红外共口径变焦光学系统的研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2018.GUO ZH L. Study of visible/infrared common aperture zoom optical system[D]. Xi’an: Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2018. (in Chinese). [11] 魏锦洋, 李旭阳, 谭龙玉, 等. 基于连续变焦的大口径长焦距的探测成像一体化光学系统设计[J]. 光子学报,2024,53(1):0122001. doi: 10.3788/gzxb20245301.0122001WEI J Y, LI X Y, TAN L Y, et al. Design of an integrated optical system for detection and imaging of large aperture and long focal length based on continuous zoom[J]. Acta Photonica Sinica, 2024, 53(1): 0122001. (in Chinese). doi: 10.3788/gzxb20245301.0122001 [12] 郁道银, 谈恒英. 工程光学[M]. 4版. 北京: 机械工业出版社, 2016.YU D Y, TAN H Y. Engineering Optics[M]. 4th ed. Beijing: China Machine Press, 2016. (in Chinese). [13] 崔宏滨, 李永平, 康学亮. 光学[M]. 2版. 北京: 科学出版社, 2015. (查阅网上资料, 未找到对应的英文翻译, 请确认并补充) . [14] 吕博, 冯睿, 寇伟, 等. 折反射式空间相机光学系统设计与杂散光抑制[J]. 中国光学,2020,13(4):822-831. doi: 10.37188/CO.2019-0036LÜ B, FENG R, KOU W, et al. Optical system design and stray light suppression of catadioptric space camera[J]. Chinese Optics, 2020, 13(4): 822-831. (in Chinese). doi: 10.37188/CO.2019-0036 [15] 郭永祥, 李英才, 梁天梅, 等. 一种大视场离轴三反射光学系统研究[J]. 光学学报,2010,30(9):2680-2683. doi: 10.3788/AOS20103009.2680GUO Y X, LI Y C, LIANG T M, et al. Optical design of the uncoaxial three-mirror system with wide field of view[J]. Acta Optica Sinica, 2010, 30(9): 2680-2683. (in Chinese). doi: 10.3788/AOS20103009.2680 [16] 王健. 基于矢量像差理论的离轴反射式宽波段红外目标模拟器研究[D]. 长春: 中国科学院大学(长春光学精密机械与物理研究所), 2012.WANG J. Study on off-axis reflective broadband IR simulator based on the theory of vector aberrations[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2012. (in Chinese). [17] FUERSCHBACH K, ROLLAND J P, THOMPSON K P. Theory of aberration fields for general optical systems with freeform surfaces[J]. Optics Express, 2014, 22(22): 26585-26606. doi: 10.1364/OE.22.026585 [18] 梁士通, 杨建峰, 薛彬, 等. 四反射镜光学系统像差分析与设计[J]. 光学学报,2010,30(11):3300-3305. doi: 10.3788/AOS20103011.3300LIANG SH T, YANG J F, XUE B, et al. Aberration analysis and design of four-mirror reflective optical system[J]. Acta Optica Sinica, 2010, 30(11): 3300-3305. (in Chinese). doi: 10.3788/AOS20103011.3300