留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

标签分布不平衡的涡旋光束轨道角动量识别

于海洋 尚凡华 王宇兴 王大涛 陈纯毅

于海洋, 尚凡华, 王宇兴, 王大涛, 陈纯毅. 标签分布不平衡的涡旋光束轨道角动量识别[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0155
引用本文: 于海洋, 尚凡华, 王宇兴, 王大涛, 陈纯毅. 标签分布不平衡的涡旋光束轨道角动量识别[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0155
YU Hai-yang, SHANG Fan-hua, WANG Yu-xing, WANG Da-tao, CHEN Chun-yi. Recognition method for vortex beams orbital angular momentum with imbalanced label[J]. Chinese Optics. doi: 10.37188/CO.2024-0155
Citation: YU Hai-yang, SHANG Fan-hua, WANG Yu-xing, WANG Da-tao, CHEN Chun-yi. Recognition method for vortex beams orbital angular momentum with imbalanced label[J]. Chinese Optics. doi: 10.37188/CO.2024-0155

标签分布不平衡的涡旋光束轨道角动量识别

cstr: 32171.14.CO.2024-0155
基金项目: 国家自然科学基金(No. 62305030,No. 62275033),吉林省科技发展计划项目(No. 20240602123RC)
详细信息
    作者简介:

    于海洋(1989—),男,吉林长春人,博士,主要从事计算机应用、光传输建模方面的研究。E-mail:custhaiyang@126.com

  • 中图分类号: TP391

Recognition method for vortex beams orbital angular momentum with imbalanced label

Funds: Supported by the National Natural Science Foundation of China (No. 62305030, No. 62275033); Science and Technology Development Project of Jilin Province (No. 20240602123RC)
More Information
  • 摘要:

    针对标签分布不平衡的轨道角动量(OAM)识别问题,提出了一种基于全局代价SMOTE的深度极限学习机(DELM)的衍生模型。与典型的机器学习方法不同,本文所提方法能够获得映射模型解析表达,避免了反复的参数优化过程,使模型适用于工程应用。在数据生成阶段,利用协方差的逆矩阵去除量纲的影响,有效度量了同一类样本的差异性。在模型选择阶段,考虑了光信号在大气湍流中的传输特性,采用DELM表征光斑样本和标签之间的映射关系,并用FISTA算法计算模型的解析表达。在不同强度的大气湍流数据集上进行实验,对比了WELM、k近邻等代表性的方法。实验结果表明,在不同的湍流强度下,所提方法均方根误差达到0.20490.0894,各项评价指标均优于对比方法。证明了所提方法能够充分挖掘了OAM光斑集合的特征,具有更好的识别效果。

     

  • 图 1  本文方法框架示意图

    Figure 1.  Schematic diagram of the proposed method

    图 2  激光光斑图

    Figure 2.  Laser spot diagram

    图 3  所提方法和对比方法的RMSE对比图

    Figure 3.  Comparison chart of RMSE between the proposed method and other methods

    图 4  所提方法和对比方法的G-mean对比图

    Figure 4.  Comparison chart of G-mean between the proposed method and other methods

    图 5  所提方法和对比方法的ROC曲线对比图

    Figure 5.  Comparison chart of ROC curve between the proposed method and other methods

    表  1  所提方法伪代码

    Table  1.   The pseudocode of proposed method

    (1)数据生成阶段,根据式(11)进行重采样;
    (2)if(样本数目<平均样本数目);
    (3) 根据式(12)计算马氏距离;
    添加新样本到样本集合中sample=[sample s];
    (4)end;
    (5)利用多层ELM网络构建特征向量与OAM标签关系;
    (6)初始化目标函数并根据式(15)制定最优准则;
    (7)计算Lipschitz条件的近似函数;
    (8)利用FISTA迭代求解每一层输出权重;
    (9)利用式(19)计算综合权重;
    (10)返回输出层权重的解析解$ {{\boldsymbol{\beta }}_j} $和OAM模态估计值。
    下载: 导出CSV

    表  2  混淆矩阵

    Table  2.   The confusion matrix

    真实结果预测结果
    正例反例
    正例TP (真正例)FN (假反例)
    反例FP (假正例)TN (真反例)
    下载: 导出CSV

    表  3  消融实验

    Table  3.   The ablation experiment

    深度ELMSMOTE-DELM
    $ C_n^2 = {10^{ - 14}} $0.25520.2049
    $ C_n^2 = {10^{ - 15}} $0.09240.0894
    下载: 导出CSV
  • [1] ARYA S, CHUNG Y H. A comprehensive survey on optical scattering communications: current research, new trends, and future vision[J]. IEEE Communications Surveys & Tutorial, 2024, 26(2): 1446-1477.
    [2] CHEN R, ZHOU J X, LONG W X, et al. Hybrid circular array and Luneberg lens for long-distance OAM wireless communications[J]. IEEE Transactions on Communications, 2023, 71(1): 485-497. doi: 10.1109/TCOMM.2022.3223697
    [3] YU H, YANG B W, HU H Y, et al. Propagation characteristics of the vortex beam array through anisotropic non-Kolmogorov maritime atmospheric turbulence[J]. Frontiers in Physics, 2023, 11: 1277132. doi: 10.3389/fphy.2023.1277132
    [4] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [5] JING G Q, CHEN L ZH, WANG P P, et al. Recognizing fractional orbital angular momentum using feed forward neural network[J]. Results in Physics, 2021, 28: 104619. doi: 10.1016/j.rinp.2021.104619
    [6] FU X, BAI Y H, YANG Y J. Measuring OAM by the hybrid scheme of interference and convolutional neural network[J]. Optical Engineering, 2021, 60(6): 064109.
    [7] 娄岩, 陈纯毅, 赵义武, 等. 高斯涡旋光束在大气湍流传输中的特性研究[J]. 中国光学,2017,10(6):768-776. doi: 10.3788/co.20171006.0768

    LOU Y, CHEN CH Y, ZHAO Y W, et al. Characteristics of Gaussian vortex beam in atmospheric turbulence transmission[J]. Chinese Optics, 2017, 10(6): 768-776. (in Chinese). doi: 10.3788/co.20171006.0768
    [8] ZHOU H Q, WANG Y T, LI X, et al. A deep learning approach for trustworthy high-fidelity computational holographic orbital angular momentum communication[J]. Applied Physics Letters, 2021, 119(4): 044104. doi: 10.1063/5.0051132
    [9] 吴鹏飞, 贾致远, 雷思琛, 等. 改进CNN-Transformer结合双缝干涉的轨道角动量模态识别方法[J]. 光学学报,2024,10:1-17.

    WU P F, JIA ZH Y, LEI S CH, et al. A method for orbital angular momentum mode recognition employing an enhanced CNN-transformer model integrated with double-slit interference[J]. Acta Optica Sinica, 2024, 10: 1-17. (查阅网上资料, 未找到本条文献卷期信息, 请确认) .
    [10] ZHU CH X, ZHOU X X, GUO G C, et al. Simulating electrical fields in the orbital angular momentum space of light[J]. Optics Express, 2022, 30(2): 972-985. doi: 10.1364/OE.446276
    [11] 郑崇辉, 王天枢, 刘哲绮, 等. 深度迁移学习方法识别轨道角动量光束[J]. 光电工程,2022,49(6):210409.

    ZHENG CH H, WANG T SH, LIU ZH Q, et al. Deep transfer learning method to identify orbital angular momentum beams[J]. Opto-Electronic Engineering, 2022, 49(6): 210409. (in Chinese).
    [12] 周旭, 陈纯毅, 于海洋, 等. 基于注意力机制的轨道角动量多叠加态识别方法[J]. 激光与光电子学进展,2023,60(23):2306003.

    ZHOU X, CHEN CH Y, YU H Y, et al. Orbital angular momentum multi-superposition identification method based on attention mechanism[J]. Laser & Optoelectronics Progress, 2023, 60(23): 2306003. (in Chinese).
    [13] CHEN CH Y, YANG H M. Characterizing the statistical distribution for transmission coefficient of turbulent optical orbital-angular-momentum channels[J]. Optics Express, 2019, 27(20): 28968-28982. doi: 10.1364/OE.27.028968
    [14] GONG CH L, GU L X. A novel SMOTE-based classification approach to online data imbalance problem[J]. Mathematical Problems in Engineering, 2016, 2016: 5685970.
    [15] 王忠震, 黄勃, 方志军, 等. 改进SMOTE的不平衡数据集成分类算法[J]. 计算机应用,2019,39(9):2591-2596.

    WANG ZH ZH, HUANG B, FANG ZH J, et al. Improved SMOTE unbalanced data integration classification algorithm[J]. Journal of Computer Applications, 2019, 39(9): 2591-2596. (in Chinese).
    [16] ZHANG A M, YU H L, HUAN ZH J, et al. SMOTE-RkNN: a hybrid re-sampling method based on SMOTE and reverse k-nearest neighbors[J]. Information Sciences, 2022, 595: 70-88. doi: 10.1016/j.ins.2022.02.038
    [17] HUANG G, HUANG G B, SONG SH J, et al. Trends in extreme learning machines: a review[J]. Neural Networks, 2015, 61: 32-48. doi: 10.1016/j.neunet.2014.10.001
    [18] YAN D Q, CHU Y H, ZHANG H Y, et al. Information discriminative extreme learning machine[J]. Soft Computing, 2018, 22(2): 677-689. doi: 10.1007/s00500-016-2372-y
    [19] YU H Y, CHEN CH Y, HU X J, et al. An efficient recognition method for orbital angular momentum via adaptive deep ELM[J]. Sensors, 2023, 23(21): 8737. doi: 10.3390/s23218737
    [20] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. doi: 10.1137/080716542
    [21] DELGADO-VENCES F J, FLANDOLI F. A spectral-based numerical method for Kolmogorov equations in Hilbert spaces[J]. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2016, 19(3): 1650020. doi: 10.1142/S021902571650020X
    [22] LAI J, WANG X D, XIANG Q, et al. Multilayer discriminative extreme learning machine for classification[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(6): 2111-2125. doi: 10.1007/s13042-022-01749-7
    [23] 陈纯毅, 杨华民, 任斌, 等. 激光大气湍流传输数值实验建模与计算机模拟[J]. 系统仿真学报,2018,30(6):2133-2143.

    CHEN CH Y, YANG H M, REN B, et al. Modeling and computer simulation of numerical experiments on laser propagation through atmospheric turbulence[J]. Journal of System Simulation, 2018, 30(6): 2133-2143. (in Chinese).
    [24] 姜楠, 李晓英, 牛春晖, 等. 大气湍流对激光空间传输特性影响的实验研究[J]. 激光技术,2022,46(5):708-712.

    JIANG N, LI X Y, NIU CH H, et al. Experimental study on the influence of atmospheric turbulence on laser spatial transmission characteristics[J]. Laser Technology, 2022, 46(5): 708-712. (in Chinese).
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  18
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-02
  • 录用日期:  2024-10-29
  • 网络出版日期:  2024-11-27

目录

    /

    返回文章
    返回