留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二向偏振分布函数修正的机场地物材质可见光偏振特性研究

邹宏扬 战俊彤 李文君 张肃 付强 段锦 李英超 刘宏宇

邹宏扬, 战俊彤, 李文君, 张肃, 付强, 段锦, 李英超, 刘宏宇. 基于二向偏振分布函数修正的机场地物材质可见光偏振特性研究[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0158
引用本文: 邹宏扬, 战俊彤, 李文君, 张肃, 付强, 段锦, 李英超, 刘宏宇. 基于二向偏振分布函数修正的机场地物材质可见光偏振特性研究[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0158
ZOU Hong-yang, ZHAN Jun-tong, LI Wen-jun, ZHANG Su, FU Qiang, DUAN Jin, LI Ying-chao, LIU Hong-yu. Study on visible polarization characteristics of airport ground material based on BPDF correction[J]. Chinese Optics. doi: 10.37188/CO.2024-0158
Citation: ZOU Hong-yang, ZHAN Jun-tong, LI Wen-jun, ZHANG Su, FU Qiang, DUAN Jin, LI Ying-chao, LIU Hong-yu. Study on visible polarization characteristics of airport ground material based on BPDF correction[J]. Chinese Optics. doi: 10.37188/CO.2024-0158

基于二向偏振分布函数修正的机场地物材质可见光偏振特性研究

cstr: 32171.14.CO.2024-0158
基金项目: 吉林省科技发展计划(No. 20240101342JC);吉林省科技厅项目(No. 0230203029SF);国家自然科学基金项目(No. 62127813);北京空间机电研究所院士工作站基金(No. 23-11-131-W)
详细信息
    作者简介:

    邹宏扬(1998—),男,吉林长春人,硕士研究生,2021年在吉林化工学院获得学士学位,主要从事目标偏振特性技术、偏振探测技术方面的研究。E-mail:hyang0721@163.com

    战俊彤(1987—),女,吉林长春人,博士研究生,副教授,2016年在长春理工大学获光学工程专业工学博士学位,主要从事偏振信息处理技术、目标偏振特性技术方面的研究。E-mail:zhanjuntong@cust.edu.cn

  • 中图分类号: O436.3

Study on visible polarization characteristics of airport ground material based on BPDF correction

Funds: Supported by Jilin Science and Technology Development Program (No. 20240101342JC); Project of Jilin Provincial Science and Technology Department (No. 0230203029SF); National Natural Science Foundation of China (NSFC) (No. 62127813); Fund for Academician Workstation of Beijing Institute of Space Electromechanics (No. 23-11-131-W)
More Information
  • 摘要:

    为研究典型机场地物材质的偏振特性,提供偏振成像仪器研制所需的理论模型,本文以P-G模型为基础,首先分析了大角度光线入射,阴影遮蔽效应更严重的问题,通过将镜面反射点等效为三维球体的方法,利用球面三角学公式优化了阴影遮蔽函数;根据不同目标存在独特的色散特征,引入色散模型,代替受波长影响的传统二向反射分布函数(BRDF)参量,综合漫反射、体散射,构建了新的二向偏振分布函数(BPDF)模型。实验阶段,标定线偏振度精度,通过多角度BRDF实验,与基于动态TS算法的模型参量拟合,得到典型机场地物材质的线偏振度与模型六参量拟合结果,经多组测试取均值,得到拟合参量中均方根粗糙度参量的测试值,验证了修正BPDF模型的有效性。仿真阶段,以均方根误差(RMSE)作为精度指标,将修正BPDF模型、对照模型、实验结果三者对比,分析了探测角、方位角、入射角对偏振特性的影响,4种实验目标在探测角变化时,精度较对照模型分别提升了4.39%、4.00%、4.17%、5.26%,且大探测角下的RMSE也小于0.05,修正后模型可用于机场地物目标等粗糙材质的偏振特性研究。最后,仿真了拟合参量对目标偏振特性的影响,结果表明线偏振度与折射率成正比关系,与表面粗糙程度呈反比关系。以上,证明了修正BPDF模型的准确性,为机场地物目标的偏振特性研究提供了思路。

     

  • 图 1  散射三分量与BRDF几何关系图

    Figure 1.  Scattering three components and Geometric relationship diagram of BRDF

    图 2  球面投影

    Figure 2.  Spherical Projection

    图 3  目标色散特征

    Figure 3.  Target Dispersion Characteristics

    图 4  偏振定标系统

    Figure 4.  Polarization calibration system

    图 5  室内多角度BRDF测试系统

    Figure 5.  Indoor multi-angle BRDF testing system

    图 6  相对方位角180°和入射角20°、40°、60°下,探测角与线偏振度的关系

    Figure 6.  Detection angle versus line polarization at 180° relative azimuth and 20°, 40°, and 60° incident angles

    图 7  入射角为60°下,$2{\text{π }}$范围内线偏振度仿真结果(左对照模型,中修正后BPDF模型,右实验测量值);

    Figure 7.  Simulation results of line polarizability in the range of $2{\text{π }}$ at an incidence angle of 60° (left control model, middle modified BPDF model, right experimental measurements)

    图 8  入射角=探测角=60°时,修正模型与实验结果对比

    Figure 8.  Comparison between the modified model and experimental results for incident angle = detection angle = 60°;

    图 9  探测角60°、相对方位角90°~270°范围内,入射角10°、20°、30°、40°、50°、60°的仿真结果

    Figure 9.  Simulation results for incidence angles of 10°, 20°, 30°, 40°, 50°, and 60° in the range of detection angles of 60° and relative azimuth angles of 90° to 270°.

    图 10  相对方位角180°和探测角20°、40°、60°范围内,入射角与线偏振度的关系

    Figure 10.  Relationship between angle of incidence and linear polarization for a range of relative azimuth angles of 180° and detection angles of 20°, 40°, and 60°

    图 11  均方根粗糙度$\delta $与线偏振度关系

    Figure 11.  Root-mean-square roughness versus line DOLP

    图 12  折射率$n$与线偏振度关系

    Figure 12.  Refractive index versus line$DOLP$

    表  1  DOLP标定结果

    Table  1.   DOLP calibration results

    Polarized light (DOLP) Incident light (DOLP) Emerging light Maximum error (%)
    1 0.966 3.4%
    45° 1 0.975 2.5%
    90° 1 0.972 2.8%
    135° 1 0.969 3.1%
    下载: 导出CSV

    表  2  参量拟合结果

    Table  2.   Results of parametric fitting

    材料${\varepsilon _{\text{i}}}$${\varepsilon _{\text{r}}}$$\delta (\mu m)$${\delta ^*}(\mu m)$${{\text{k}}_{\text{s}}}$${{\text{k}}_{\text{m}}}$${{\text{k}}_{\text{v}}}$
    45#钢板4.56-2.540.1880.1950.9020.0450.003
    A3铁板14.14-9.550.3020.3060.5210.3340.015
    硅酸盐水泥1.371.480.3180.3280.3110.3270.009
    环氧树脂2.69-1.620.1200.1220.7730.2020.031
    下载: 导出CSV

    表  3  探测角变化,目标仿真值与实测值的均方根误差

    Table  3.   Root mean square error of simulated and measured Values of target $DOLP$ for detection angle change

    材料RMSE1RMSE2精度提升/%
    45#钢板0.06340.01954.39%
    A3铁板0.05140.01144.00%
    硅酸盐水泥0.08590.04424.17%
    环氧树脂0.06770.01515.26%
    下载: 导出CSV

    表  4  入射角变化,仿真值与实测值的均方根误差

    Table  4.   Root mean square error of simulated and measured Values of target $DOLP$ for incidence angle change

    材料RMSE1RMSE2精度提升/%
    45#钢板0.06750.02144.61%
    A3铁板0.05830.01484.35%
    硅酸盐水泥0.05730.02643.09%
    环氧树脂0.06810.02304.51%
    下载: 导出CSV
  • [1] 付强, 战俊彤, 张肃, 等. 恶劣条件下多谱段偏振目视辅助光学成像技术[J]. 光学学报,2023,43(15):1511004. doi: 10.3788/AOS230961

    FU Q, ZHAN J T, ZHANG S, et al. Multispectral polarization visually assisted optical imaging technology under harsh conditions[J]. Acta Optica Sinica, 2023, 43(15): 1511004. (in Chinese). doi: 10.3788/AOS230961
    [2] 段锦, 付强, 莫春和, 等. 国外偏振成像军事应用的研究进展(上)[J]. 红外技术,2014,36(3):190-195. doi: 10.11846/j.issn.1001_8891.201403003

    DUAN J, FU Q, MO CH H, et al. Review of polarization imaging technology for international military application I[J]. Infrared Technology, 2014, 36(3): 190-195. (in Chinese). doi: 10.11846/j.issn.1001_8891.201403003
    [3] 胡浩丰, 黄一钊, 朱震, 等. 基于深度学习复杂环境的偏振成像技术研究进展(特邀)[J]. 红外与激光工程,2024,53(3):20240057. doi: 10.3788/IRLA20240057

    HU H F, HUANG Y Z, ZHU ZH, et al. Research progress on polarimetric imaging technology in complex environments based on deep learning[J]. Infrared and Laser Engineering, 2024, 53(3): 20240057. (in Chinese). doi: 10.3788/IRLA20240057
    [4] WANG Y, SU Y Q, SUN X Y, et al. Principle and implementation of stokes vector polarization imaging technology[J]. Applied Sciences, 2022, 12(13): 6613. doi: 10.3390/app12136613
    [5] ZHONG A Q, FU Q, HUANG D F, et al. Performance analysis of joint imaging system with polarized, infrared, and visible cameras for multi-sensor imaging[J]. Optik, 2023, 295: 171512. doi: 10.1016/j.ijleo.2023.171512
    [6] 李淑军, 姜会林, 朱京平, 等. 偏振成像探测技术发展现状及关键技术[J]. 中国光学,2013,6(6):803-809.

    LI S J, JIANG H L, ZHU J P, et al. Development status and key technologies of polarization imaging detection[J]. Chinese Optics, 2013, 6(6): 803-809. (in Chinese).
    [7] 王佳林, 段锦, 付强, 等. 基于Mueller矩阵的偏振抑制反光方法[J]. 光学学报,2023,43(20):2012003. doi: 10.3788/AOS230572

    WANG J L, DUAN J, FU Q, et al. Polarization suppression reflection method based on Mueller matrix[J]. Acta Optica Sinica, 2023, 43(20): 2012003. (in Chinese). doi: 10.3788/AOS230572
    [8] PRIEST R G, GERMER T. Polarimetric BRDF in the microfacet model: theory and measurements[C]. Proceeding of 2000 Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, 2000, 1: 169-181. (查阅网上资料, 未找到本条文献出版者信息, 请补充) .
    [9] 尚可, 晏磊, 张飞舟, 等. 从BRDF到BPDF: 遥感反演基础模型的演进初探[J]. 中国科学: 信息科学,2024,54(8):2001-2020. doi: 10.1360/SSI-2023-0193

    SHANG K, YAN L, ZHANG F ZH, et al. From BRDF to BPDF: a premilinary study on evolution of the basic remote sensing quantitative inversion model[J]. Scientia Sinica Informationis, 2024, 54(8): 2001-2020. (in Chinese). doi: 10.1360/SSI-2023-0193
    [10] LIU S Y, LIN Y, YAN L, et al. Modeling bidirectional polarization distribution function of land surfaces using machine learning techniques[J]. Remote Sensing, 2020, 12(23): 3891. doi: 10.3390/rs12233891
    [11] 白鹏涛, 孙兴伟, 董祉序, 等. 基于改进的微面元偏振BRDF模型的粗糙表面偏振反射特性分析[J]. 激光杂志,2022,43(8):24-29.

    BAI P T, SUN X W, DONG ZH X, et al. Analysis of rough surface polarization reflection characteristics based on improved micro-surface polarization BRDF model[J]. Laser Journal, 2022, 43(8): 24-29. (in Chinese).
    [12] 张潞, 樊金浩, 鲁宇轩, 等. 改进鲸鱼优化算法的壁面红外反射特性求解[J]. 中国光学(中英文),2024,17(3):595-604. doi: 10.37188/CO.2023-0095

    ZHANG L, FAN J H, LU Y X, et al. Infrared reflection characteristics of the wall solved by improved whale optimization algorithm[J]. China Optics, 2024, 17(3): 595-604. (in Chinese). doi: 10.37188/CO.2023-0095
    [13] ZHAN H Y, VOELZ D G, KUPINSKI M. Parameter-based imaging from passive multispectral polarimetric measurements[J]. Optics Express, 2019, 27(20): 28832-28843. doi: 10.1364/OE.27.028832
    [14] RENHORN I G E, BOREMAN G D, et al. Developing a generalized BRDF model from experimental data[J]. Optics Express, 2018, 26(13): 17099-17114. doi: 10.1364/OE.26.017099
    [15] YANG M, XU W B, SUN ZH Y, et al. Degree of polarization modeling based on modified microfacet pBRDF model for material surface[J]. Optics Communications, 2019, 453: 124390. doi: 10.1016/j.optcom.2019.124390
    [16] 刘卿, 战永红, 杨迪, 等. 粗糙表面偏振二向反射分布函数的影响参数及其反演[J]. 飞行器测控学报,2015,34(5):481-488.

    LIU Q, ZHAN Y H, YANG D, et al. Parameters of the polarimetric bidirectional reflectance distribution function of rough surfaces and parameter inversion[J]. Journal of Spacecraft TT & C Technology, 2015, 34(5): 481-488. (in Chinese).
    [17] RENHORN I G E, HALLBERG T, BOREMAN G D. Efficient polarimetric BRDF model[J]. Optics Express, 2015, 23(24): 31253-31273. doi: 10.1364/OE.23.031253
    [18] 韦统方. BRDF优化统计建模及应用[D]. 西安: 西安电子科技大学, 2012.

    WEI T F. The optimized statistical modeling for BRDF and its application[D]. Xi’an: Xi'an University of Electronic Science and Technology, 2012. (in Chinese).
    [19] MINNAERT M. The reciprocity principle in lunar photometry[J]. Astrophysical Journal, 1941, 93: 403-410. doi: 10.1086/144279
    [20] FU Q, LIU X W, WAMG L T, et al. Analysis of target surface polarization characteristics and inversion of complex refractive index based on three-component model optimization[J]. Optics & Laser Technology, 2023, 162: 109225.
    [21] 郁道银. 工程光学[M]. 2版. 北京: 机械工业出版社, 2006.

    YU D Y. Engineering Optics[M]. 2nd ed. Beijing: China Machine Press, 2006. (in Chinese) (查阅网上资料, 未找到本条文献英文信息, 请确认) .
    [22] 王鑫. 基于多角度多光谱偏振遥感的地物目标识别研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.

    WANG X. Research on ground target recongnition based on multi-angle and multispectral polarimetric remote sensing[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021. (in Chinese).
    [23] WANG Y, SU Y Q, SUN X Y, et al. Principle and implementation of stokes vector polarization imaging technology[J]. Applied Sciences, 2022, 12(13): 6613. (查阅网上资料, 本条文献与第4条文献重复, 请确认) .
    [24] 王莉雅. 基于pBRDF模型的目标表面偏振特性分析[D]. 长春: 长春理工大学, 2022.

    WANG L Y. Polarization characteristics analysis of target surface based on pBRDF model[D]. Changchun: Changchun University of Science and Technology, 2022. (in Chinese).
    [25] 战俊彤, 邹宏扬, 张肃, 等. 基于pBRDF与动态TS算法的粗糙度测量装置及方法: 中国, 116448020A[P]. 2023-07-18.

    ZHAN J T, ZOU H Y, ZHANG S, et al. Roughness measuring device and method based on pBRDF and dynamic TS algorithm: CN, 116448020A[P]. 2023-07-18. (in Chinese).
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-05
  • 录用日期:  2024-11-12
  • 网络出版日期:  2024-11-28

目录

    /

    返回文章
    返回