留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二阶泵浦种子光对三阶拉曼光纤放大器的影响

陈佟 刘伟 杨悦 李扬 龙函 吴剑军 项旻 成炬新

陈佟, 刘伟, 杨悦, 李扬, 龙函, 吴剑军, 项旻, 成炬新. 二阶泵浦种子光对三阶拉曼光纤放大器的影响[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0170
引用本文: 陈佟, 刘伟, 杨悦, 李扬, 龙函, 吴剑军, 项旻, 成炬新. 二阶泵浦种子光对三阶拉曼光纤放大器的影响[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0170
CHEN Tong, LIU Wei, YANG Yue, LI Yang, LONG Han, WU Jian-jun, XIANG Min, CHENG Ju-xin. The influence of second-order pump seed light on third-order Raman fiber amplifier[J]. Chinese Optics. doi: 10.37188/CO.2024-0170
Citation: CHEN Tong, LIU Wei, YANG Yue, LI Yang, LONG Han, WU Jian-jun, XIANG Min, CHENG Ju-xin. The influence of second-order pump seed light on third-order Raman fiber amplifier[J]. Chinese Optics. doi: 10.37188/CO.2024-0170

二阶泵浦种子光对三阶拉曼光纤放大器的影响

cstr: 32171.14.CO.2024-0170
基金项目: 国家电网有限公司科技项目(No. SGZB0000TGJS2301000)
详细信息
    作者简介:

    陈 佟,男,江苏南通人。副教授级高工,硕士研究生,主要研究方向电力通信网及超长距光通信传输技术。E-mail:453381951@qq.com通信作者:

    龙 函,男,湖北黄冈人。硕士研究生,主要研究方向为超长距光通信传输系统。E-mail:han.long@accelink.com

  • 中图分类号: TN913.7

The influence of second-order pump seed light on third-order Raman fiber amplifier

Funds: Supported by
More Information
  • 摘要:

    三阶拉曼光纤放大器因其较高的增益与较低的噪声指数被用于长距离无中继光传输中。三阶拉曼放大器作为拉曼放大的前沿技术,目前国内对其的研究较少,泵浦的配置与放大器的性能关系还不够明晰。为此,本文实验测试了二阶泵浦种子光对三阶拉曼光纤放大器的性能影响。本文首先用功率耦合方程定性分析了不使用二阶泵浦种子光的可行性,之后实验验证了在缺少二阶泵浦种子光的条件下,三阶拉曼光纤放大器仍能实现对信号光的增益,但相比有二阶泵浦种子光时效率会降低。本文搭建了47波200 km的波分复用传输系统实验验证,结果表明:在没有二阶泵浦种子光的情况下三阶拉曼光纤放大器也可以实现对信号光的增益,但引入二阶泵浦种子光能显著提升性能,仅25 mW的二阶泵浦种子光就能使信号得到最少3.7 dB,平均6 dB的功率提升以及平均0.8 dB的光信噪比提升。省去二阶泵浦种子光能降低成本,但引入二阶泵浦种子光能对三阶拉曼放大器带来显著的性能提升。

     

  • 图 1  三阶拉曼光纤放大器工作原理

    Figure 1.  Principle of third order Raman amplifier

    图 2  无二阶泵浦种子光时三阶拉曼光纤放大器工作原理

    Figure 2.  Principle of third order Raman amplifier without second order pump seed light

    图 3  仅泵浦作用时的实验装置

    Figure 3.  Experiment setup with only pumps as input

    图 4  仅输入三阶泵浦光时输出端光谱

    Figure 4.  The output spectrum with only 1276 nm pump as input

    图 5  输入一阶和三阶泵浦光时输出端光谱

    Figure 5.  The output spectrum with 1435 nm and 1276 nm pumps as input

    图 6  仅三阶泵浦光输入时,各阶泵浦光功率随三阶泵浦光输入功率变化

    Figure 6.  The relationship between the power of pumps and the input power of the third-order pump when only the third-order pump is input

    图 7  一阶+三阶泵浦光输入时,各阶泵浦光功率随三阶泵浦光输入功率变化

    Figure 7.  The relationship between the power of pumps and the input power of the third-order pump when first-order pump and third-order pump are input

    图 8  二阶泵浦种子光对一阶泵浦光输出功率的影响

    Figure 8.  The influence of second-order pump seed light on the output power of first-order pump light

    图 9  实验装置:(a)框图;(b)实物图

    Figure 9.  The experiment setup

    图 10  输入光谱

    Figure 10.  The input optical spectrum

    图 11  输出信号功率比较

    Figure 11.  Comparison of output signal power

    图 12  输出信号光信噪比比较

    Figure 12.  Comparison of output signal OSNR

  • [1] BISSESSUR H, BASTIDE C, DUBOST S, et al. 80 × 200 Gb/s 16-QAM unrepeatered transmission over 321 km with third order Raman amplification[C]. 2015 Optical Fiber Communications Conference and Exhibition (OFC), IEEE, 2015: 1-3.
    [2] XU J, YU J K, HU Q G, et al. 50G BPSK, 100G SP-QPSK, 200G 8QAM, 400G 64QAM ultra long single span unrepeatered transmission over 670.64km, 653.35km, 601.93km and 502.13km respectively[C]. 2019 Optical Fiber Communications Conference and Exhibition (OFC), IEEE, 2019: 1-3.
    [3] WEN Q Y, LI J P, WANG Y, et al. Real-time 100G and 200G unrepeatered transmission over 691.8km and 655.9km respectively[C]. 2024 Optical Fiber Communications Conference and Exhibition (OFC), IEEE, 2024: 1-3.
    [4] 赵晗祺, 李娜, 吴斌, 等. 短距光纤通信系统中基于神经网络的非线性均衡器研究和实现[J]. 中国光学(中英文), 2024, doi: 10.37188/CO.2024-0114. (查阅网上资料,未找到卷期页码信息,请确认补充) .

    ZHAO H Q, LI N, WU B, et al. Nonlinear equalizer based on neural network in high-speed optical fiber communication systems[J]. Chinese Optics, 2024, doi: 10.37188/CO.2024-0114. (in Chinese).
    [5] 赵航宇, 王道斌, 张硕, 等. 基于实虚交替导频的CO-OFDM-OQAM通信系统激光器相位噪声抑制方法[J]. 中国光学(中英文),2024,17(4):950-958. doi: 10.37188/CO.2023-0230

    ZHAO H Y, WANG D B, ZHANG SH, et al. Laser phase noise suppression method for a CO-OFDM-OQAM communication system with real-imaginary-alternate pilots[J]. Chinese Optics, 2024, 17(4): 950-958. (in Chinese). doi: 10.37188/CO.2023-0230
    [6] 刘庆敏, 孙慧杰, 侯尚林, 等. 双包层掺铥光纤放大器中的受激布里渊散射[J]. 中国光学(中英文),2024,17(1):226-237. doi: 10.37188/CO.EN-2023-0011

    LIU Q M, SUN H J, HOU SH L, et al. Stimulated brillouin scattering in double-clad thulium-doped fiber amplifier[J]. Chinese Optics, 2024, 17(1): 226-237. (in Chinese). doi: 10.37188/CO.EN-2023-0011
    [7] 巩稼民, 张玉蓉, 徐军华, 等. 二阶拉曼光纤放大器增益特性研究[J]. 光子学报,2020,49(8):0806001. doi: 10.3788/gzxb20204908.0806001

    GONG J M, ZHANG Y R, XU J H, et al. Research on gain characteristics of second-order Raman fiber amplifier[J]. Acta Photonica Sinica, 2020, 49(8): 0806001. (in Chinese). doi: 10.3788/gzxb20204908.0806001
    [8] 迟荣华, 吕涛, 王飞, 等. 基于二阶拉曼放大器的OTN超长距光传输系统的理论和实验研究[J]. 电子器件,2019,42(4):887-890.

    CHI R H, LV T, WANG F, et al. Theoretical and experimental study on OTN ultra-long distance optical transmission system based on second-order Raman amplifier[J]. Chinese Journal of Electron Devices, 2019, 42(4): 887-890. (in Chinese).
    [9] 汪大洋, 曹晶, 李程, 等. 二阶拉曼放大器技术在电力超长站距光传输系统中的应用[J]. 电力信息与通信技术,2017,15(8):60-65.

    WANG D Y, CAO J, LI CH, et al. Application of second-order Raman amplifier in electric power ultra-long distance optical transmission system[J]. Electric Power Information and Communication Technology, 2017, 15(8): 60-65. (in Chinese).
    [10] IQBAL M A, TAN M M, FORYSIAK W, et al. Opportunities and challenges for discrete Raman amplifiers in ultrawideband transmission systems[C]. 2022 IEEE Photonics Society Summer Topicals Meeting Series (SUM), IEEE, 2022: 1-2.
    [11] 李晓琳. 新型光纤分布式拉曼放大技术研究进展[J/OL]. 激光技术, 2024, 48(4): 1-14. http://kns.cnki.net/kcms/detail/51.1125.TN.20240423.1611.009.html. (查阅网上资料,请联系作者补充引用日期信息) (查阅网上资料,未找到卷期页码信息,请确认) .

    LI X L. Research progress on the novel distributed Raman amplification technologies[J/OL]. Laser Technology, 2024, 48(4): 1-14. http://kns.cnki.net/kcms/detail/51.1125.TN.20240423.1611.009.html. (in Chinese).
    [12] 臧可. 高阶光纤拉曼放大器的特性研究[D]. 北京: 北京邮电大学, 2013.

    ZANG K. Research on the characteristics of the higher-order Raman fiber amplifier[D]. Beijing: Beijing University of Posts and Telecommunications, 2013. (in Chinese).
    [13] 卢晨皓. 长距离光纤通信系统放大技术研究[D]. 北京: 北京邮电大学, 2022.

    LU CH H. Research on amplification technology of long-distance optical fiber communication system[D]. Beijing: Beijing University of Posts and Telecommunications, 2022. (in Chinese).
    [14] ANIA-CASTAÑÓN J D. Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings[J]. Optics Express, 2004, 12(19): 4372-4377. doi: 10.1364/OPEX.12.004372
    [15] 孙淑娟. 三阶拉曼光纤放大器的研究与应用[D]. 武汉: 武汉邮电科学研究院, 2019.

    SUN SH J. Research and application of third-order fiber Raman amplifier[D]. Wuhan: FiberHome Technologies Group, 2019. (in Chinese).
    [16] ZHANG W Y, DU J B, HE Z Y. 130 nm SCL-wideband and -7.1 dB effective-noise-figure amplification using third-order distributed Raman amplifier[C]. 2023 Opto-Electronics and Communications Conference (OECC), IEEE, 2023: 1-3.
    [17] 陈佟, 邓黎, 王谦, 等. 基于神经网络的三阶拉曼放大光传输系统建模[J/OL]. 光通信研究, 2024: 1-10. http://kns.cnki.net/kcms/detail/42.1266.tn.20240621.1117.004.html. (查阅网上资料,请联系作者补充引用日期信息) .

    CHEN T, DENG L, WANG Q, et al. Modeling of optical fiber transmission system with third order Raman amplifier based on neural network[J/OL]. Study on Optical Communications, 2024: 1-10. http://kns.cnki.net/kcms/detail/42.1266.tn.20240621.1117.004.html. (in Chinese).
    [18] KIDORF H, ROTTWITT K, NISSOV M, et al. Pump interactions in a 100-nm bandwidth Raman amplifier[J]. IEEE Photonics Technology Letters, 1999, 11(5): 530-532. doi: 10.1109/68.759388
  • 加载中
图(12)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-26
  • 录用日期:  2024-11-26
  • 网络出版日期:  2024-12-05

目录

    /

    返回文章
    返回