-
摘要:
三阶拉曼光纤放大器因其较高的增益与较低的噪声指数被用于长距离无中继光传输中。三阶拉曼放大器作为拉曼放大的前沿技术,目前国内的研究较少,对于泵浦的配置与放大器的性能关系还不够明晰。为此,本文通过实验测试了二阶泵浦种子光对三阶拉曼光纤放大器的性能影响。首先用功率耦合方程定性分析了不使用二阶泵浦种子光的可行性,之后实验验证了在缺少二阶泵浦种子光的条件下,三阶拉曼光纤放大器仍能实现对信号光的增益,但较有二阶泵浦种子光时效率会降低。本文搭建了47波200 km的波分复用传输系统进行实验验证。结果表明:在没有二阶泵浦种子光的情况下三阶拉曼光纤放大器也可以实现对信号光的增益,但引入二阶泵浦种子光能显著提升性能,仅25 mW的二阶泵浦种子光就能使信号得到最少3.7 dB,平均6 dB的功率提升以及平均0.8 dB的光信噪比提升。省去二阶泵浦种子光能降低成本,但引入二阶泵浦种子光能显著提升三阶拉曼放大器的性能。
Abstract:Third-order Raman fiber amplifiers are used in long-haul unrepeated optical transmission due to their higher gain and lower noise figure. Third-order Raman fiber amplifiers are advanced Raman amplification technology. There is currently very limited research on it in China. The relationship between the pump configuration and the amplifier’s performance remains unclear. Therefore, this paper analyzes the influence of second-order pump seed light on third-order Raman fiber amplifiers through experiments. First, the feasibility of not using second-order pump seed light was qualitatively analyzed. Then, it was experimentally verified that in the absence of second-order pump seed light, the third-order Raman fiber amplifier can still achieve signal light gain but at decreased efficiency. A 47-channel 200 km wavelength division multiplexing transmission system was constructed. The experimental results show that the third-order Raman fiber amplifier can amplify the signal light without the second-order pump seed light. However, introducing the second-order pump seed light can significantly improve its performance. A second-order pump seed light with only 25 mW can achieve a minimum signal power gain of 3.7 dB, an average gain of 6 dB, and an average signal-to-noise ratio gain of 1.6 dB. Eliminating second-order pump seed light can reduce costs, but introducing a second-order pump seed light brings significant performance improvements to third-order Raman amplifiers.
-
-
[1] BISSESSUR H, BASTIDE C, DUBOST S, et al. 80 × 200 Gb/s 16-QAM unrepeatered transmission over 321 km with third order Raman amplification[C]. 2015 Optical Fiber Communications Conference and Exhibition (OFC), IEEE, 2015: 1-3. [2] XU J, YU J K, HU Q G, et al. 50G BPSK, 100G SP-QPSK, 200G 8QAM, 400G 64QAM ultra long single span unrepeatered transmission over 670.64 km, 653.35 km, 601.93 km and 502.13 km respectively[C]. 2019 Optical Fiber Communications Conference and Exhibition (OFC), IEEE, 2019: 1-3. [3] WEN Q Y, LI J P, WANG Y, et al. Real-time 100G and 200G unrepeatered transmission over 691.8km and 655.9km respectively[C]. 2024 Optical Fiber Communications Conference and Exhibition (OFC), IEEE, 2024: 1-3. [4] 赵晗祺, 李娜, 吴斌, 等. 短距光纤通信系统中基于神经网络的非线性均衡器[J]. 中国光学(中英文),2025,18(1):114-120.ZHAO H Q, LI N, WU B, et al. Nonlinear equalizer based on neural network in high-speed optical fiber communication systems[J]. Chinese Optics, 2025, 18(1): 114-120. (in Chinese). [5] 赵航宇, 王道斌, 张硕, 等. 基于实虚交替导频的CO-OFDM-OQAM通信系统激光器相位噪声抑制方法[J]. 中国光学(中英文),2024,17(4):950-958. doi: 10.37188/CO.2023-0230ZHAO H Y, WANG D B, ZHANG SH, et al. Laser phase noise suppression method for a CO-OFDM-OQAM communication system with real-imaginary-alternate pilots[J]. Chinese Optics, 2024, 17(4): 950-958. (in Chinese). doi: 10.37188/CO.2023-0230 [6] 刘庆敏, 孙慧杰, 侯尚林, 等. 双包层掺铥光纤放大器中的受激布里渊散射[J]. 中国光学(中英文),2024,17(1):226-237. doi: 10.37188/CO.EN-2023-0011LIU Q M, SUN H J, HOU SH L, et al. Stimulated brillouin scattering in double-clad thulium-doped fiber amplifier[J]. Chinese Optics, 2024, 17(1): 226-237. (in Chinese). doi: 10.37188/CO.EN-2023-0011 [7] 巩稼民, 张玉蓉, 徐军华, 等. 二阶拉曼光纤放大器增益特性研究[J]. 光子学报,2020,49(8):0806001. doi: 10.3788/gzxb20204908.0806001GONG J M, ZHANG Y R, XU J H, et al. Research on gain characteristics of second-order Raman fiber amplifier[J]. Acta Photonica Sinica, 2020, 49(8): 0806001. (in Chinese). doi: 10.3788/gzxb20204908.0806001 [8] 迟荣华, 吕涛, 王飞, 等. 基于二阶拉曼放大器的OTN超长距光传输系统的理论和实验研究[J]. 电子器件,2019,42(4):887-890.CHI R H, LV T, WANG F, et al. Theoretical and experimental study on OTN ultra-long distance optical transmission system based on second-order Raman amplifier[J]. Chinese Journal of Electron Devices, 2019, 42(4): 887-890. (in Chinese). [9] 汪大洋, 曹晶, 李程, 等. 二阶拉曼放大器技术在电力超长站距光传输系统中的应用[J]. 电力信息与通信技术,2017,15(8):60-65.WANG D Y, CAO J, LI CH, et al. Application of second-order Raman amplifier in electric power ultra-long distance optical transmission system[J]. Electric Power Information and Communication Technology, 2017, 15(8): 60-65. (in Chinese). [10] IQBAL M A, TAN M M, FORYSIAK W, et al. Opportunities and challenges for discrete Raman amplifiers in ultrawideband transmission systems[C]. 2022 IEEE Photonics Society Summer Topicals Meeting Series (SUM), IEEE, 2022: 1-2. [11] 李晓琳. 新型光纤分布式拉曼放大技术研究进展[J]. 激光技术,2024,48(4):1-14.LI X L. Research progress on the novel distributed Raman amplification technologies[J]. Laser Technology, 2024, 48(4): 1-14. (in Chinese). [12] 臧可. 高阶光纤拉曼放大器的特性研究[D]. 北京: 北京邮电大学, 2013.ZANG K. Research on the characteristics of the higher-order Raman fiber amplifier[D]. Beijing: Beijing University of Posts and Telecommunications, 2013. (in Chinese). [13] 卢晨皓. 长距离光纤通信系统放大技术研究[D]. 北京: 北京邮电大学, 2022.LU CH H. Research on amplification technology of long-distance optical fiber communication system[D]. Beijing: Beijing University of Posts and Telecommunications, 2022. (in Chinese). [14] ANIA-CASTAÑÓN J D. Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings[J]. Optics Express, 2004, 12(19): 4372-4377. doi: 10.1364/OPEX.12.004372 [15] 孙淑娟. 三阶拉曼光纤放大器的研究与应用[D]. 武汉: 武汉邮电科学研究院, 2019.SUN SH J. Research and application of third-order fiber Raman amplifier[D]. Wuhan: FiberHome Technologies Group, 2019. (in Chinese). [16] ZHANG W Y, DU J B, HE Z Y. 130 nm SCL-wideband and -7.1 dB effective-noise-figure amplification using third-order distributed Raman amplifier[C]. 2023 Opto-Electronics and Communications Conference (OECC), IEEE, 2023: 1-3. [17] 陈佟, 邓黎, 王谦, 等. 基于神经网络的三阶拉曼放大光传输系统建模[J]. 光通信研究,2024:1-10.CHEN T, DENG L, WANG Q, et al. Modeling of optical fiber transmission system with third order Raman amplifier based on neural network[J]. Study on Optical Communications, 2024: 1-10. [18] KIDORF H, ROTTWITT K, NISSOV M, et al. Pump interactions in a 100-nm bandwidth Raman amplifier[J]. IEEE Photonics Technology Letters, 1999, 11(5): 530-532. doi: 10.1109/68.759388 -