Variable coupling dynamic monitoring optical film thickness compensation technology
-
摘要:
为提高红外波段膜厚准确控制精度和波长精准定位等问题,本课题基于LabVIEW编程语言,在光学膜厚监控系统的基础上,进行变量耦合的动态监控光学膜厚补偿技术的研究。基于光的干涉以及光学薄膜设计理论,采用光电极值法构建数学模型,重点解决极值点判停误差和滤波除噪等问题,高度还原实时采集的光量值的监控数据,实时同步拟合膜厚监控的透射曲线,计算并拟合膜厚极值点以及任意目标厚度对应的停镀点,实现膜厚有效准确的判停。为了验证光控系统的可靠性和稳定性,通过制备
1064 nm窄带滤光膜对系统进行验证,结果表明,制备的1064 nm窄带滤光膜单面峰值透过率为91.5%,通带半宽度为5 nm,经计算,监控系统误差小于0.01%。Abstract:To address issues related to the accurate control of infrared band film thickness and precise wavelength positioning, this study employs the LabVIEW programming language to develop a dynamic monitoring and compensation technology for optical film thickness, based on an optical film thickness monitoring system. Based on the principles of light interference and optical thin film design, a mathematical model is constructed using the photoelectric polarimetric method. This study focuses on resolving stopping errors and filtering noise at extremum points, thereby accurately restoring the real-time monitoring data of light intensity. The system achieves real-time and synchronous fitting of the film’s transmittance curve, calculates and fits the stopping point corresponding to the extremum of the film thickness. To validate the reliability and stability of the optical control system, a
1064 nm narrow-band filter film was fabricated. The results indicate that the peak transmittance of the1064 nm narrow-band filter film reached 91.5%, with a pass-band half-width of 5 nm. The error of the monitoring system was calculated to be less than 0.01%.-
Key words:
- optical film /
- film thickness monitoring /
- fitting algorithm /
- narrow-band filter
-
表 1 镀膜工艺参数表
Table 1. Coating process parameters
Beam
电压/VACC
电压/VBeam
电流/mAgas1 gas2 gas3 Clear 750 600 750 40 5 8 Ti3O5 900 600 900 50 0 8 SiO2 1150 600 950 40 0 8 -
[1] 农洁, 张伊祎, 韦雪玲, 等. 电介质/金属/电介质膜系实现可见光波段高透兼容激光隐身研究[J]. 物理学报,2023,72(17):177802. doi: 10.7498/aps.72.20230855NONG J, ZHANG Y W, WEI X L, et al. Research on realizing high permeability and laser stealth compatibility in visible light band with dielectric/metal/dielectric film system[J]. Acta Physica Sinica, 2023, 72(17): 177802. (in Chinese). doi: 10.7498/aps.72.20230855 [2] 张静, 刘海成, 付秀华, 等. 5G通信LWDM窄带滤光膜的研制[J]. 中国激光,2023,50(19):1903101. doi: 10.3788/CJL221491ZHANG J, LIU H CH, FU X H, et al. Development of LWDM narrow-band filter membrane for 5G communication[J]. Chinese Journal of Lasers, 2023, 50(19): 1903101. (in Chinese). doi: 10.3788/CJL221491 [3] 郭志帅, 费书国, 李新, 等. 用于激光雷达传感系统的光学薄膜滤光片的设计[J]. 电子技术与软件工程,2022(7):152-155.GUO ZH SH, FEI SH G, LI X, et al. Design of optical thin-film filters for LiDAR sensing systems[J]. Electronic Technology & Software Engineering, 2022(7): 152-155. (in Chinese) (查阅网上资料, 未找到本条文献英文翻译信息, 请确认) . [4] 崔智超. 检测SF6气体用窄带滤光片设计与制备[D]. 镇江: 江苏大学, 2022.CUI ZH CH. Construction of silver orthophosphate composites and their photocatalytic performance[D]. Zhenjiang: Jiangsu University, 2022. (in Chinese). [5] 蔡元浩, 付秀华, 林兆文, 等. 深紫外高陡度滤光膜的研制[J]. 光学学报,2024,44(7):0731001. doi: 10.3788/AOS231921CAI Y H, FU X H, LIN ZH W, et al. Preparation of deep ultraviolet high-steepness filter film[J]. Acta Optica Sinica, 2024, 44(7): 0731001. (in Chinese). doi: 10.3788/AOS231921 [6] 高晓丹, 刘岚, 姚敏, 等. 45°倾斜应用的多通道干涉截止滤光片研制[J]. 传感器与微系统,2024,43(2):110-112.GAO X D, LIU L, YAO M, et al. Research and fabrication of multi-channel interference cut-off filter for 45° tilt application[J]. Transducer and Microsystem Technologies, 2024, 43(2): 110-112. (in Chinese). [7] 王晓坤, 李周, 梁国龙. 基于金属-介质-金属的可调谐窄带完美吸收的研究[J]. 中国光学(中英文),2024,17(2):263-270. doi: 10.37188/CO.2023-0125WANG X K, LI ZH, LIANG G L. Tunable narrow-band perfect absorber based on metal-dielectric-metal[J]. Chinese Optics, 2024, 17(2): 263-270. (in Chinese). doi: 10.37188/CO.2023-0125 [8] TIKHONRAVOV A V, TRUBETSKOV M K. Elimination of cumulative effect of thickness errors in monochromatic monitoring of optical coating production: theory[J]. Applied Optics, 2007, 46(11): 2084-2090. doi: 10.1364/AO.46.002084 [9] 董所涛. 高精度宽光谱光学膜厚监控系统的研究[D]. 长春: 长春理工大学, 2023.DONG S T. Study on high precision and wide spectrum optical thin film monitoring system[D]. Changchun: Changchun University of Science and Technology, 2023. (in Chinese). [10] ZHANG CH, WANG Y T, LU W Q. Single-wavelength monitoring method for optical thin-film coating[J]. Optical Engineering, 2004, 43(6): 1439-1444. doi: 10.1117/1.1719027 [11] 白胜元, 顾培夫, 刘旭, 等. 薄膜滤光片的光学稳定性研究[J]. 光子学报,2001,30(5):576-580.BAI SH Y, GU P F, LIU X, et al. Optical stability of thin film filters[J]. Acta Photonica Sinica, 2001, 30(5): 576-580. (in Chinese). [12] 顾培夫. 薄膜技术[M]. 杭州: 浙江大学出版社, 1990: 249-259.GU P F. Thin Film Technology[M]. Hangzhou: Zhejiang University Press, 1990: 249-259. (in Chinese) (查阅网上资料, 未找到本条文献英文翻译信息, 请确认) . [13] 马运壮. 瑞利衰落信道下自动调制识别算法研究[D]. 青岛: 青岛大学, 2023.MA Y ZH. Research on automatic modulation identification algorithm under Rayleigh fading channel[D]. Qingdao: Qingdao University, 2023. (in Chinese) (查阅网上资料, 未找到本条文献英文翻译信息, 请确认) . [14] 李筠, 梁坤, 杨海马, 等. 高精度钢轨端面坡度测量算法研究[J]. 电子测量与仪器学报,2022,36(9):29-36.LI J, LIANG K, YANG H M, et al. Research on high precision slope measurement algorithm for rail end face[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(9): 29-36. (in Chinese). [15] 杨玉好, 杨斌, 胡军, 等. 基于MHA-BiLSTM的尾矿坝位移预测[J]. 有色金属工程,2024,14(10):147-157.YANG Y H, YANG B, HU J, et al. Study on prediction of tailings dam deformation based on MHA-BiLSTM[J]. Nonferrous Metals Engineering, 2024, 14(10): 147-157. (in Chinese). -