留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于回声状态网络的空间激光干涉低低跟踪重力卫星数据恢复方法研究

江鸿 姚镇东 杨立伟 徐鹏 强丽娥

江鸿, 姚镇东, 杨立伟, 徐鹏, 强丽娥. 基于回声状态网络的空间激光干涉低低跟踪重力卫星数据恢复方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0177
引用本文: 江鸿, 姚镇东, 杨立伟, 徐鹏, 强丽娥. 基于回声状态网络的空间激光干涉低低跟踪重力卫星数据恢复方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0177
JIANG Hong, YAO Zhen-dong, YANG Li-wei, XU Peng, QIANG Li-e. Echo state network-based data recovery method for low-low satellite-to-satellite tracking missions in laser interferometry[J]. Chinese Optics. doi: 10.37188/CO.2024-0177
Citation: JIANG Hong, YAO Zhen-dong, YANG Li-wei, XU Peng, QIANG Li-e. Echo state network-based data recovery method for low-low satellite-to-satellite tracking missions in laser interferometry[J]. Chinese Optics. doi: 10.37188/CO.2024-0177

基于回声状态网络的空间激光干涉低低跟踪重力卫星数据恢复方法研究

cstr: 32171.14.CO.2024-0177
基金项目: 国家重点研发计划(No. 2020YFC2200603,No. 2020YFC2200601);中国科学院重点部署科研专项(No. KGFZD-145-24-04-03);中国科学院国际伙伴计划(No. 025GJHZ2023106GC);国家自然科学基金青年科学基金项目(No. 11905017)
详细信息
    作者简介:

    江 鸿(1999—),男,江西萍乡人,硕士研究生,2021年于南开大学获得学士学位,主要从事惯性传感器数据预处理方面的研究。E-mail:jianghong22@mails.ucas.ac.cn

    徐 鹏(1979—),男,陕西西安人,博士,中国科学院力学研究所研究员,博士生导师,2010年于北京师范大学理论物理专业获得博士学位,主要从事实验引力、引力波物理、卫星重力方向的研究。E-mail:xupeng@imech.ac.cn

  • 中图分类号: TP394.1;TH691.9

Echo state network-based data recovery method for low-low satellite-to-satellite tracking missions in laser interferometry

Funds: National Key Research and Development Program of China (No. 2020YFC2200603, No. 2020YFC2200601); Chinese Academy of Sciences Key Deployment Research Program (No. KGFZD-145-24-04-03); The International Partnership Program of the Chinese Academy of Sciences (No.025GJHZ2023106GC); Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (No. 11905017)
More Information
  • 摘要:

    作为低低跟踪重力卫星GRACE任务的后续任务,激光干涉重力卫星任务GRACE Follow On双星之一的加速度计载荷在运行一个月后出现了异常,造成了关键科学测量数据的缺失,同时在GRACE服役期最后阶段也出现了类似情况。由此,加速度计数据恢复技术对GRACE尤其是GRACE Follow On任务探测目标的实现极为重要。本文提出了一种基于机器学习的回声状态网络模型来实现加速度计数据恢复与重建的全新方法。基于回声状态网络模型,构建双星之间加速度计数据的映射关系,并通过贝叶斯优化提高网络性能,可实现对缺失加速度计数据的高精度高效率重建。通过实测数据的实验比对,在重力场探测信号频段,模型预测结果在沿轨道方向和径向两个高灵敏轴可达到(甚至部分频段优于)$ {10}^{-8} $ m∙s−2/$ \sqrt{H\textit{z}} $量级水平,在轨道法向低灵敏轴到达$ {10}^{-8} $ m∙s−2/$ \sqrt{H\textit{z}}\sim{10}^{-7} $ m∙s−2/$ \sqrt{H\textit{z}} $水平。这一重建精度达到甚至部分优于GRACE官方数据移植精度,可初步应用于重力场反演,实现低低跟踪任务加速度计高精度数据产品恢复。

     

  • 图 1  回声状态网络结构示意图

    Figure 1.  Schematic diagram of echo state network structure

    图 2  回声状态网络加速度计数据预测流程图

    Figure 2.  Flowchart of accelerometer data prediction by echo state network

    图 3  推进器事件尖峰剔除情况

    Figure 3.  Results of thruster spike removal

    图 4  回声状态网络模型数据预测总体结果。(a)沿轨道方向;(b)轨道法线方向;(c)沿轨道径向

    Figure 4.  Prediction results of ESN Model data. (a) Along orbit direction; (b) along orbit plane normal direction; (c) along orbit radial direction

    图 5  模型预测三轴方向具体结果。(a)沿轨道方向;(b)轨道法方向;(c)沿轨道径向

    Figure 5.  Detailed results along the three axes. (a) Along orbit direction; (b) along orbit plane normal direction; (c) along orbit radial direction

    图 6  GRACE任务加速度计预测结果残差振幅谱密度。(a)沿轨道方向;(b)轨道法方向;(c)沿轨道径向

    Figure 6.  Amplitude spectral density of residual acceleration for GRACE mission. (a) Along orbit direction; (b) along orbit plane normal direction; (c) along orbit radial direction

    图 7  GFO任务加速度预测结果残差振幅谱密度。(a)沿轨道方向;(b)轨道法方向;(c)径向

    Figure 7.  Amplitude spectral density of residual acceleration for GFO mission. (a) Along orbit direction; (b) along orbit plane normal direction; (c) along orbit radial direction

    表  1  回声状态网络训练数据来源

    Table  1.   Training data source

    文件名数据标识数据描述
    ACC1Blin_accl_x、lin_accl_y、lin_accl_z线性加速度
    GNV1Bxpos、ypos、zposGPS坐标
    SCA1Bquatangle、quaticoeff、quatjcoeff、quatkcoeff四元数
    下载: 导出CSV

    表  2  回声状态网络超参数设定

    Table  2.   Hyperparameter settings of ESN

    超参数名称参数范围设定值
    储层神经元个数[150, 500]347
    谱半径[0.5, 1.6]0.95
    输入缩放因子[0.1, 0.5]0.25
    泄露率[0.05, 0.6]0.30
    下载: 导出CSV
  • [1] TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the earth system[J]. Science, 2004, 305(5683): 503-505.
    [2] TAPLEY B D, WATKINS M M, FLECHTNER F, et al. Contributions of GRACE to understanding climate change[J]. Nature Climate Change, 2019, 9(5): 358-369.
    [3] TAPLEY B D, BETTADPUR S, WATKINS M, et al. The gravity recovery and climate experiment: mission overview and early results[J]. Geophysical Research Letters, 2004, 31(9): L09607.
    [4] FENG W, ZHONG M, LEMOINE J M, et al. Evaluation of groundwater depletion in north China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements[J]. Water Resources Research, 2013, 49(4): 2110-2118. doi: 10.1002/wrcr.20192
    [5] CHEN J L, CAZENAVE A, DAHLE C, et al. Applications and challenges of GRACE and GRACE Follow-On satellite gravimetry[J]. Surveys in Geophysics, 2022, 43(1): 305-345.
    [6] 苏晓莉, 平劲松, 叶其欣. GRACE卫星重力观测揭示华北地区陆地水量变化[J]. 中国科学: 地球科学,2011,54(12):1965-1970.

    SU X L, PING J S, YE Q X. Terrestrial water variations in the North China Plain revealed by the GRACE mission[J]. Science China Earth Sciences, 2011, 54(12): 1965-1970.
    [7] 王正涛. 卫星跟踪卫星测量确定地球重力场的理论与方法[D]. 武汉: 武汉大学, 2005.

    WANG ZH T. Theory and methodology of earth gravity field recovery by satellite-to-satellite tracking data[D]. Wuhan: Wuhan University, 2005. (in Chinese).
    [8] GAFUROV A, SELYUZHENOK V, LATINOVIC M, et al. GRACE observes the natural and irrigation-induced regional redistribution of water storage in Central Asia[J]. Journal of Hydrology: Regional Studies, 2024, 56: 101994.
    [9] LANDERER F W, FLECHTNER F M, SAVE H, et al. Extending the global mass change data record: GRACE follow-on instrument and science data performance[J]. Geophysical Research Letters, 2020, 47(12): e2020GL088306. doi: 10.1029/2020GL088306
    [10] KORNFELD R P, ARNOLD B W, GROSS M A, et al. GRACE-FO: the gravity recovery and climate experiment follow-on mission[J]. Journal of Spacecraft and Rockets, 2019, 56(3): 931-951.
    [11] 罗志才, 钟波, 周浩, 等. 利用卫星重力测量确定地球重力场模型的进展[J]. 武汉大学学报·信息科学版,2022,47(10):1713-1727.

    LUO ZH C, ZHONG B, ZHOU H, et al. Progress in determining the earth's gravity field model by satellite gravimetry[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1713-1727. (in Chinese).
    [12] ABICH K, ABRAMOVICI A, AMPARAN B, et al. In-orbit performance of the GRACE follow-on laser ranging interferometer[J]. Physical Review Letters, 2019, 123(3): 031101.
    [13] 王娟, 齐克奇, 王少鑫, 等. 面向空间引力波探测的激光干涉技术研究进展及展望[J]. 中国科学: 物理学 力学 天文学,2024,54(7):270405.

    WANG J, QI K Q, WANG SH X, et al. Advance and prospect in the study of laser interferometry technology for space gravitational wave detection[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2024, 54(7): 270405. (in Chinese).
    [14] SAVE H V, BETTADPUR S V, TAPLEY B D. Single accelerometer gravity solutions for GRACE[C]. AGU Fall Meeting, American Geophysical Union, 2006: G13A-0026.
    [15] SAVE H. GRACE battery status and science impact[C]. GRACE Science Team Meeting, 2016. (查阅网上资料, 未找到本条文献出版者, 请确认) .
    [16] BANDIKOVA T, MCCULLOUGH C, KRUIZINGA G L, et al. GRACE accelerometer data transplant[J]. Advances in Space Research, 2019, 64(3): 623-644.
    [17] BEHZADPOUR S, MAYER-GÜRR T, KRAUSS S. GRACE follow-on accelerometer data recovery[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(5): e2020JB021297.
    [18] 张荣, 李伟平, 莫同. 深度学习研究综述[J]. 信息与控制,2018,47(4):385-397.

    ZHANG R, LI W P, MO T. Review of deep learning[J]. Information and Control, 2018, 47(4): 385-397. (in Chinese).
    [19] SHILENGWE C, BANDA K, NYAMBE I. Machine learning downscaling of GRACE/GRACE-FO data to capture spatial-temporal drought effects on groundwater storage at a local scale under data-scarcity[J]. Environmental Systems Research, 2024, 13(1): 38.
    [20] JAEGER H, HAAS H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication[J]. Science, 2004, 304(5667): 78-80.
    [21] SUN CH X, SONG M X, CAI D R, et al. A systematic review of echo state networks from design to application[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(1): 23-37.
    [22] GASPARIN A, LUKOVIC S, ALIPPI C. Deep learning for time series forecasting: the electric load case[J]. CAAI Transactions on Intelligence Technology, 2022, 7(1): 1-25. doi: 10.1049/cit2.12060
    [23] LI ZH, YANG Y F. Universality and approximation bounds for echo state networks with random weights[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(2): 2720-2732.
    [24] CHEN X F, LIU M, LI SH. Echo state network with probabilistic regularization for time series prediction[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(8): 1743-1753. doi: 10.1109/JAS.2023.123489
    [25] LIU CH, ZHANG H G, LUO Y H, et al. Dual heuristic programming for optimal control of continuous-time nonlinear systems using single echo state network[J]. IEEE Transactions on Cybernetics, 2022, 52(3): 1701-1712.
    [26] SNOEK J, LAROCHELLE H, ADAMS R P. Practical Bayesian optimization of machine learning algorithms[C]. Proceedings of the 26th International Conference on Neural Information Processing Systems, Curran Associates Inc. , 2012: 2951-2959.
    [27] BECKERS T. An introduction to Gaussian process models. arXiv preprint arXiv: 2102.05497, 2021.
    [28] HE X, ZHAO K Y, CHU X W. AutoML: a survey of the state-of-the-art[J]. Knowledge-Based Systems, 2021, 212: 106622. doi: 10.1016/j.knosys.2020.106622
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  57
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 录用日期:  2024-12-17
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回