留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于几何估计优化的多线激光三维重建

黄会明 刘桂华 邓磊 宋涛 钦付平

黄会明, 刘桂华, 邓磊, 宋涛, 钦付平. 基于几何估计优化的多线激光三维重建[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0184
引用本文: 黄会明, 刘桂华, 邓磊, 宋涛, 钦付平. 基于几何估计优化的多线激光三维重建[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0184
HUANG Hui-ming, LIU Gui-hua, DENG Lei, SONG Tao, QIN Fu-ping. Multi-line laser 3D reconstruction based on geometric estimation optimization[J]. Chinese Optics. doi: 10.37188/CO.2024-0184
Citation: HUANG Hui-ming, LIU Gui-hua, DENG Lei, SONG Tao, QIN Fu-ping. Multi-line laser 3D reconstruction based on geometric estimation optimization[J]. Chinese Optics. doi: 10.37188/CO.2024-0184

基于几何估计优化的多线激光三维重建

cstr: 32171.14.CO.2024-0184
基金项目: 国家自然科学基金(No. 11602292);广东省电网公司广州供电局的项目(No. 080044KK52190002)
详细信息
    作者简介:

    黄会明(1984—),男,安徽安庆人,西南科技大学在读博士,主要从事三维重建方面的研究。E-mail:372813807@qq.com

    刘桂华(1972—),女,博士,教授,博士生导师。主要研究方向包括计算机视觉、图像处理、基于FPGA的集成电路设计等。E-mail:liughua_swit@163.com

  • 中图分类号: TP242.2

Multi-line laser 3D reconstruction based on geometric estimation optimization

Funds: Supported by National Natural Science Foundation of China (No. 11602292), and the projects of Guangzhou power supply bureau of Guangdong Power Grid Co., Ltd (No. 080044KK52190002)
More Information
  • 摘要:

    传统的多线激光三维重建技术中通常采用基于双目极线约束与激光空间方程相结合的方法。这种方法首先利用极线约束来识别多个潜在的匹配点,然后通过多线激光的空间方程来筛选出正确的匹配点,最终利用这些匹配点来实现三维重建的过程。然而由于多线激光线不可避免地会受到噪声的影响,检测的激光中心坐标往往存在一定的误差。这种误差会导致直接使用基于极线约束找到的匹配点进行三维重建时无法获得高精度的三维数据。为了解决上述问题,本文提出了一种基于几何估计的方法来实现多线激光的三维重建。首先通过标定出多线激光的二次曲面方程,结合双目极线约束的方法可以计算出多线激光的初始匹配点。在找到正确的初始匹配点之后,利用图像点与双视图极线的关系约束来建立一个几何距离最小化的估计模型。通过这个几何距离最小化的优化估计,可以重新计算出更加符合极线约束的新匹配点从而提高激光图像点的匹配精度,最后根据这些新的匹配点来完成多线激光的三维重建。相较于传统的方法,本文提出的算法在匹配度和精度方面表现更优,最终的三维重建的精度可以达到0.02 mm左右。通过这种方法可以显著提高双目多线激光重建的整体精度从而获得更加精确和可靠的三维数据。

     

  • 图 1  交叉7线激光示意图

    Figure 1.  Crossed 7-line laser diagram

    图 2  多线激光曲面结构图。(a)交叉7线模型图;(b)激光投射的曲线;(c)单个激光的曲面结构图

    Figure 2.  Multiline laser surface structure diagram. (a) Cross-seven line model diagram; (b) Curves of laser projection; (c) Surface structure diagram of a single laser

    图 3  激光线投射在标定板上以及激光线编号

    Figure 3.  The laser lines are projected on the calibration plan and the laser lines are numbered.

    图 4  多线激光曲面与标定平面相交图。(a)多线激光空间二次曲面与标定板相交情况;(b)单个激光二次曲面与多个位置标定相交情况

    Figure 4.  Intersection diagram of multi-line laser surface and calibration plane.(a) The intersection of the multi-line laser spatial quadric surface with the calibration plate; (b) When a single laser quadric is calibrated to intersect multiple positions

    图 5  极线约束示意图

    Figure 5.  Polar constraint diagram

    图 6  极线匹配示意图

    Figure 6.  Polar line matching diagram

    图 7  极线几何距离误差示意图

    Figure 7.  Schematic diagram of geometric distance error of polar lines

    图 8  手持多线激光硬件

    Figure 8.  Handheld multi-line laser hardware

    图 9  反光标定板

    Figure 9.  reflective calibration plate

    图 10  多线激光曲面方程标定采集

    Figure 10.  Calibration and acquisition of multi-line laser surface equation

    图 11  多线激光中心提取与分类

    Figure 11.  Multi-line laser center extraction and classification

    图 12  激光点匹配与反投影

    Figure 12.  Laser point matching and backprojection

    图 13  基于几何估计优化前后的点云效果对比,(a)左右多线激光提取效果和框选的区域;(b)框选区域优化之前的点云效果;(c)框选区域几何估计优化之后的点云效果;(d)(e)几何估计优化之后的整体点云重建效果

    Figure 13.  Comparison of point cloud effect before and after optimization based on geometric estimation, (a) left and right multi-line laser extraction effect and box selection area; (b) Optimized the previous point cloud effect; (c) Geometrically estimated point cloud effect after optimization; (d) and (e) Overall point cloud reconstruction effect after geometric estimation optimization

    图 14  标准球重建结果。(a)标准球实物;(b)初始匹配重建的点云效果;(c)几何估计优化之后的点云效果

    Figure 14.  Reconstruction result of standard ball.(a) Standard ball physical object; (b) Point cloud effect of original match reconstruction; (c) Geometrically estimated point cloud effect after optimization

    图 15  实物三维重建结果对比

    Figure 15.  Comparison of 3D reconstruction results

    表  1  手持多线激光硬件参数

    Table  1.   Handheld multi-line laser hardware parameters

    多线激光 相机
    波长(nm) 450 分辨率 1280*1024
    交叉角度 120 焦距 12 mm
    通道数 2 角度 120
    投射范围 300 mm−400 mm
    投诉距离 400 mm
    下载: 导出CSV

    表  2  激光线拟合的二次曲面参数

    Table  2.   Parameters of quadric surface fitted by laser lines

    $ f(x,y) = {a_0}{x^2} + {a_1}{y^2} + {a_2}xy + {a_3}x + {a_4}y + {a_5} $
    序号a0a1a2a3a4a5
    10.043550.176520.168474532.34−846.793523.5824
    21.1044945.582004.95249−323.814−730.0082189.0322
    30.0188820.102880.086289.9783123.65561133.3425
    40.001240.010610.006903.257508.05648502.28098
    50.000030.002790.0000622.122235.61680332.88023
    60.0004870.001000.0034331.360854.00520251.74369
    70.0001480.000150.0025010.966193.22864200.97273
    下载: 导出CSV

    表  3  图像点到极线的距离

    Table  3.   The distance from the image point to the epipolar

    初始匹配点优化后点极线距离/像素
    优化前优化后
    [433.768 ,200.620]
    [429.553 ,226.722]
    [432.983 ,200.125]
    [428.876 ,226.360]
    0.280.064
    [477.079,411.815]
    [464.988,426.827]
    [476.825,411.129]
    [464.167,426.114]
    0.410.055
    [434.472,201.047]
    [430.743,227.391]
    [434.018,200.538]
    [430.003,226.994]
    0.370.089
    [477.767,412.273]
    [465.754,427.245]
    [477.380,411.992]
    [465.104,426.833]
    0.280.051
    [733.345,200.354]
    [687.059,204.529]
    [732.914,200.019]
    [686.653,204.178]
    0.320.0643
    下载: 导出CSV

    表  4  算法优化前后的球心距和误差

    Table  4.   The center distance and error before and after the algorithm is optimized

    序号优化前标准球心距离/mm优化后标准球心距离/mm
    160.245560.0234
    260.257060.0229
    360.308460.0301
    460.312360.0214
    560.401560.0325
    平均误差0.30290.0241
    下载: 导出CSV
  • [1] 许新傲, 李艺璇, 钱佳铭, 等. 基于全局优化的实时高精度模型重建[J]. 液晶与显示,2023,38(6):748-758. doi: 10.37188/CJLCD.2023-0086

    XU X A, LI Y X, QIAN J M, et al. Real-time high-precision model reconstruction based on global optimization[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(6): 748-758. doi: 10.37188/CJLCD.2023-0086
    [2] LI W G, HOU D M, LUO Z X. Clustering of divergent multi-line structured light stripes based on structural constraint[J]. Optik, 2022, 265: 169178. doi: 10.1016/j.ijleo.2022.169178
    [3] ZHANG CH B, CUI H H, YIN W, et al. A robust real-time laser measurement method based on noncoding parallel multi-line[C]. Proceedings of Optical Metrology and Inspection for Industrial Applications IV, SPIE, 2016: 1002321.
    [4] CUI X ZH, ZHOU X L, LOU J J, et al. Measurement method of asphalt pavement mean texture depth based on multi-line laser and binocular vision[J]. International Journal of Pavement Engineering, 2017, 18(5): 459-471. doi: 10.1080/10298436.2015.1095898
    [5] SUN Q C, REN Z M, ZHU J L, et al. A three-dimensional structured light vision system by using a combination of single-line and three-line lasers[J]. Sensors, 2023, 23(1): 13.
    [6] CUI B, TAO W, ZHAO H. High-precision 3D reconstruction for small-to-medium-sized objects utilizing line-structured light scanning: a review[J]. Remote Sensing, 2021, 13(21): 4457. doi: 10.3390/rs13214457
    [7] WAN M S, ZHENG R H, WANG S D, et al. Efficient 3D scanning measurement system based on asymmetric trinocular vision and a multi-line laser[J]. Applied Optics, 2023, 62(8): 2145-2153. doi: 10.1364/AO.481406
    [8] PING Y S, LIU Y K. A calibration method for line-structured light system by using sinusoidal fringes and homography matrix[J]. Optik, 2022, 261: 169192. doi: 10.1016/j.ijleo.2022.169192
    [9] CAO Y, FENG Y, CHEN Y J, et al. A method of 3D scene reconstruction with vehicle-borne laser scanner based on monocular visual positioning[C]. Proceedings of International Symposium on Photoelectronic Detection and Imaging 2011: Laser Sensing and Imaging; and Biological and Medical Applications of Photonics Sensing and Imaging, SPIE, 2011, doi: 10.1117/12.900981.
    [10] JIAN X, CHEN X, HE W P, et al. Outdoor 3D reconstruction method based on multi-line laser and binocular vision[J]. IFAC-PapersOnLine, 2020, 53(2): 9554-9559. doi: 10.1016/j.ifacol.2020.12.2436
    [11] OESAU S, LAFARGE F, ALLIEZ P. Indoor scene reconstruction using feature sensitive primitive extraction and graph-cut[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 90: 68-82. doi: 10.1016/j.isprsjprs.2014.02.004
    [12] KWOCZYŃSKA B, MAŁYSA B. Integration of data obtained from laser scanning and UAV used to develop a 3D model of the building object[J]. Archives of Civil Engineering, 2022, 68(4): 311-330.
    [13] ZHANG CH B, CUI H H, YIN W, et al. A robust real-time laser measurement method based on noncoding parallel multi-line[C]. Proceedings of Optical Metrology and Inspection for Industrial Applications IV, SPIE, 2016: 1002321. (查阅网上资料, 本条文献与第3条文献重复, 请确认) .
    [14] CHIANG P J, LIN C H. Active stereo vision system with rotated structured light patterns and two-step denoising process for improved spatial resolution[J]. Optics and Lasers in Engineering, 2022, 152: 106958. doi: 10.1016/j.optlaseng.2022.106958
    [15] LIU H G, ZHANG H, SHI B K, et al. A linear structured light calibration method based on 2D planar target[J]. Applied Laser, 2022, 42(8): 0129. (查阅网上资料, 未找到本条文献信息, 请确认) .
    [16] 袁小翠, 王咏涛, 刘宝玲, 等. 基于3D线激光传感器的轨道弹条扣件结构缺陷检测方法[J]. 红外与激光工程,2024,53(7):20240176. doi: 10.3788/IRLA20240176

    YUAN X C, WANG Y T, LIU B L, et al. Detection method for structural defects of railway clip fastener based on 3D line laser sensor[J]. Infrared and Laser Engineering, 2024, 53(7): 20240176. (in Chinese). doi: 10.3788/IRLA20240176
    [17] 韩家杰, 周建平, 薛瑞雷, 等. 线结构光管道焊缝表面形貌重建与质量评估[J]. 中国激光,2021,48(14):1402010. doi: 10.3788/CJL202148.1402010

    HAN J J, ZHOU J P, XUE R L, et al. Surface morphology reconstruction and quality evaluation of pipeline weld based on line structured light[J]. Chinese Journal of Lasers, 2021, 48(14): 1402010. (in Chinese). doi: 10.3788/CJL202148.1402010
    [18] HUANG H M, LIU G H, XIAO C J, et al. Spatial quadric calibration method for multi-line laser based on diffractive optical element[J]. AIP Advances, 2024, 14: 035017. doi: 10.1063/5.0194603
    [19] 李伟明, 彭国, 高兴宇, 等. 线激光光条中心快速提取算法[J]. 中国激光,2020,47(3):0304002. doi: 10.3788/CJL202047.0304002

    LI W M, PENG G, GAO X Y, et al. Fast extraction algorithm for line laser strip centers[J]. Chinese Journal of Lasers, 2020, 47(3): 0304002. (in Chinese). doi: 10.3788/CJL202047.0304002
    [20] 蔡怀宇, 冯召东, 黄战华. 基于主成分分析的结构光条纹中心提取方法[J]. 中国激光,2015,42(3):0308006. doi: 10.3788/CJL201542.0308006

    CAI H Y, FENG ZH D, HUANG ZH H. Centerline extraction of structured light stripe based on principal component analysis[J]. Chinese Journal of Lasers, 2015, 42(3): 0308006. (in Chinese). doi: 10.3788/CJL201542.0308006
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  23
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 录用日期:  2024-11-22
  • 网络出版日期:  2024-12-05

目录

    /

    返回文章
    返回