Terahertz broadband absorption spectrum enhancement based on asymmetric dielectric meta-grating on a metal substrate
-
摘要:
太赫兹分子指纹谱是一种非常有潜力的无标记检测方法,在实际应用往往需要对微量甚至痕量样品检测。然而太赫兹波的波长远远大于待测分子的尺寸,导致波与痕量物质之间的相互作用较为微弱,需要额外结构来增强样品对电磁波的吸收。本文在金属基底上构造了倒置的非对称介质光栅结构,该结构利用导模共振(Guided-mode resonance,GMR)和连续域束缚态(Bound state In Continuum,BIC)显著提升了薄膜样品的太赫兹吸收谱。同时仅需测量反射吸收信号就可以得到薄膜增强吸收谱,而且样品涂覆于倒置的介质光栅平坦的背面,易于制备。当该结构用于0.2 μm厚的α-乳糖薄膜时,吸收谱幅度增强达到236倍。该结构为太赫兹波段痕量分析物的检测提供了一种新的方法。
Abstract:Terahertz molecular fingerprinting is a promising method for label-free detection, particularly for micro or trace amount samples in practical applications. However, the wavelength of terahertz waves is much larger than the size of the molecules to be tested, resulting in a weak interaction between the waves and the matter. To address this challenge, additional structures are needed to enhance the absorption of electromagnetic waves by trace amount samples. In this study, we constructed an inverted asymmetric dielectric grating structure on a metal substrate. By utilizing guided-mode resonance (GMR) and a bound state in the continuum (BIC) effect, the terahertz absorption spectrum of thin film samples was significantly enhanced. The enhanced absorption spectra can be easily obtained by measuring the reflected absorption signal. The samples are coated on the flat back of the inverted dielectric grating, which simplifies the preparation process. For instance, when the thickness of an α-lactose film is 0.2 μm, the absorption enhancement factor reaches 236. This study provides a new method for detecting trace analytes in the terahertz band.
-
Key words:
- Terahertz /
- fingerprint spectrum /
- absorption enhancement /
- meta-grating /
- metal substrate
-
图 1 金属基底上倒置全介质超光栅角度复用增强薄膜太赫兹吸收谱结构示意图。符号w1,w2,w3和w4分别表示四个光栅元件的宽度,p,h1,h2和d分别表示单元结构周期、光栅高度、波导层厚度和分析物厚度
Figure 1. Schematic diagram of the inverted metagrating on the metal substrate for THz absorption enhancing of a film analyte. The symbols w1, w2, w3, and w4 denote the widths of the four grating elements, while p, h1, h2, and d represent the unit cell period, grating layer height, WG layer height, and analyte thickness, respectively
图 4 本文超光栅结构增强乳糖薄膜的太赫兹吸收谱。(a)0.2 μm纯α-乳糖薄膜吸收光谱(蓝色实线),涂覆有0.2 μm α-乳糖的吸收光谱(灰色实线),涂覆有0.2 μm α-乳糖吸收光谱包络线(红色虚线);(b)0.48 THz~0.58 THz波段内α-乳糖介电常数的实部和虚部;(c)在不同的入射角θ下,涂覆有α-乳糖(d=0.2 μm)和未涂覆α-乳糖对应共振频率下的x-z平面归一化电场分布
Figure 4. Terahertz absorption spectra of lactose thin films enhanced by the structure in this paper. (a) Absorption spectrum of 0.2 μm pure α-lactose film (blue solid line), absorption spectrum coated with 0.2 μm α-lactose (gray solid line), and the envelope of the absorption spectrum coated with 0.2 μm α-lactose (red dashed line); (b) the real and imaginary parts of the α-lactose dielectric constants in the band of 0.48 THz~0.58 THz; (c) the absorption spectra of the thin-film coating of α-lactose (d=0.2 μm) and uncoated α-lactose (d=0.2 μm) under different incidence angles θ at corresponding resonant frequencies. lactose (d=0.2 μm) and uncoated α-lactose at different incidence angles θ. The x-z plane normalized electric field distributions at the corresponding resonance frequencies are shown below.
图 5 (a)不同入射角(θ)和频率下有无涂覆α-乳糖电场强度的变化情况。红色点上方标注的数字表示涂覆α-乳糖后结构中最大电场强度相较于无涂覆乳糖的降低百分比。(b)太赫兹波入射角度θ=5°时不同γ值的超表面反射谱。
Figure 5. (a) Changes in electric field intensity with and without α-lactose coating under different incident angles (θ) and frequencies. The numbers above the red dots represent the percentage reduction in the maximum electric field intensity of the structure with α-lactose coating compared to that without the coating.(b) Reflectance spectra of the metasurface at different γ values with a terahertz wave incident angle of θ = 5°.
图 6 吸收增强光谱与薄膜厚度及光栅参数的关系(h1=h2=140 μm,w1=w3=150 μm,w2=60 μm,w4=20 μm)。(a)超光栅上不同厚度的 α-乳糖的吸收包络曲线。(b)不同h1下的吸收率包络曲线。(c) 不同h2下的吸收率包络曲线。(d) 不同γ的吸收率包络曲线。
Figure 6. Absorption enhancement spectra versus film thickness and metagrating parameters (h1=h2=140 μm,w1=w3=150 μm,w2=60 μm,w4=20 μm). (a) Absorbance envelope curves for different thicknesses of α-lactose on the metasurface. (b). Absorbance envelope curves at different h1. (c) Absorbance envelope curves at different h2. (d) Absorbance envelope curves for different γ.
表 1 我们设计的结构与目前基于不同复用方法的元表面或光栅的吸收增强性能比较
Table 1. Comparison of absorption enhancement performances of our designed structure and present metasurfaces or gratings based on different multiplexing method
-
[1] KOCH M, MITTLEMAN D M, ORNIK J, et al. Terahertz time-domain spectroscopy[J]. Nature Reviews Methods Primers, 2023, 3(1): 48. doi: 10.1038/s43586-023-00232-z [2] DAMARI R, WEINBERG O, KROTKOV D, et al. Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies[J]. Nature Communications, 2019, 10(1): 3248. doi: 10.1038/s41467-019-11130-y [3] WANG P L, LOU J, FANG G Y, et al. Progress on cutting-edge infrared-terahertz biophysics[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(11): 5117-5140. doi: 10.1109/TMTT.2022.3200333 [4] ZHANG F, WANG H W, TOMINAGA K, et al. Mixing of intermolecular and intramolecular vibrations in optical phonon modes: terahertz spectroscopy and solid-state density functional theory[J]. WIREs Computational Molecular Science, 2016, 6(4): 386-409. doi: 10.1002/wcms.1256 [5] PENG Y, SHI CH J, ZHU Y M, et al. Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement[J]. PhotoniX, 2020, 1(1): 12. doi: 10.1186/s43074-020-00011-z [6] YANG L, GUO T X, ZHANG X, et al. Toxic chemical compound detection by terahertz spectroscopy: a review[J]. Reviews in Analytical Chemistry, 2018, 37(3): 20170021. [7] LIU X Y, CHEN W, MA Y J, et al. Enhancing THz fingerprint detection on the planar surface of an inverted dielectric metagrating: publisher’s note[J]. Photonics Research, 2023, 11(4): 581. doi: 10.1364/PRJ.488861 [8] QUARANTA G, BASSET G, MARTIN O J F, et al. Recent advances in resonant waveguide gratings[J]. Laser & Photonics Reviews, 2018, 12(9): 1800017. [9] SUN L, XU L, WANG J Y, et al. A pixelated frequency-agile metasurface for broadband terahertz molecular fingerprint sensing[J]. Nanoscale, 2022, 14(27): 9681-9685. doi: 10.1039/D2NR01561G [10] 李向军, 候小梅, 程钢, 等. 基于柔性基底动态调焦石墨烯超表面聚焦反射镜的仿真研究[J]. 中国光学,2021,14(4):1019-1028. doi: 10.37188/CO.2020-0171LI X J, HOU X M, CHENG G, et al. Simulation on tunable graphene metasurface focusing mirror based on flexible substrate[J]. Chinese Optics, 2021, 14(4): 1019-1028. (in Chinese). doi: 10.37188/CO.2020-0171 [11] SEO M, PARK H R. Terahertz biochemical molecule-specific sensors[J]. Advanced Optical Materials, 2020, 8(3): 1900662. doi: 10.1002/adom.201900662 [12] LI X J, YANG J, YAN D X, et al. Highly enhanced trace amount terahertz fingerprint spectroscopy by multiplexing surface spoof plasmon metasurfaces in a single layer[J]. Optics Communications, 2022, 525: 128777. doi: 10.1016/j.optcom.2022.128777 [13] SILALAHI H M, CHEN Y P, SHIH Y H, et al. Floating terahertz metamaterials with extremely large refractive index sensitivities[J]. Photonics Research, 2021, 9(10): 1970-1978. doi: 10.1364/PRJ.433335 [14] 李向军, 马婵, 严德贤, 等. 基于介质超表面角度复用的太赫兹增强吸收谱[J]. 中国光学,2022,15(4):731-739. doi: 10.37188/CO.2021-0197LI X J, MA C, YAN D X, et al. Enhancement of terahertz absorption spectrum based on the angle multiplexing of the dielectric metasurface[J]. Chinese Optics, 2022, 15(4): 731-739. (in Chinese). doi: 10.37188/CO.2021-0197 [15] TITTL A, LEITIS A, LIU M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105-1109. doi: 10.1126/science.aas9768 [16] LEITIS A, TITTL A, LIU M K, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval[J]. Science Advances, 2019, 5(5): eaaw2871. doi: 10.1126/sciadv.aaw2871 [17] LIN J, XUE Y, WANG W J, et al. Enhancing multi-spectral fingerprint sensing for trace explosive molecules with all-silicon metasurfaces[J]. Nanomaterials, 2024, 14(9): 738. doi: 10.3390/nano14090738 [18] YAN D X, WANG Z H, LI X J, et al. Highly boosted trace-amount terahertz vibrational absorption spectroscopy based on defect one-dimensional photonic crystal[J]. Optics Letters, 2023, 48(7): 1654-1657. doi: 10.1364/OL.486433 [19] LI X J, WU H, YAN D X, et al. Enhancement of the terahertz absorption spectroscopy based on the stretchable dielectric metasurface[J]. Applied Physics A, 2024, 130(1): 50. doi: 10.1007/s00339-023-07205-9 [20] KOSHELEV K, BOGDANOV A, KIVSHAR Y, et al. Engineering with bound states in the continuum[J]. Optics and Photonics News, 2020, 31(1): 38-45. doi: 10.1364/OPN.31.1.000038 [21] GAO X W, HSU C W, ZHEN B, et al. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs[J]. Scientific Reports, 2016, 6(1): 31908. doi: 10.1038/srep31908 [22] BYKOV D A, BEZUS E A, DOSKOLOVICH L L. Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings[J]. Physical Review A, 2019, 99(6): 063805. doi: 10.1103/PhysRevA.99.063805 [23] HAN S, RYBIN M V, PITCHAPPA P, et al. Guided-mode resonances in all-dielectric terahertz metasurfaces[J]. Advanced Optical Materials, 2020, 8(3): 1900959. doi: 10.1002/adom.201900959 [24] HU H Y, PAL A K, BERESTENNIKOV A, et al. Surface-enhanced Raman scattering in BIC-driven semiconductor metasurfaces[J]. Advanced Optical Materials, 2024, 12(14): 2302812. doi: 10.1002/adom.202302812 [25] SHI X M, HAN ZH H. Enhanced terahertz fingerprint detection with ultrahigh sensitivity using the cavity defect modes[J]. Scientific Reports, 2017, 7(1): 13147. doi: 10.1038/s41598-017-13612-9 [26] XIE Y N, LIU X Y, ZHOU J, et al. Enhancing trace terahertz fingerprint sensing by the lossy silicon metagrating with a gold mirror[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(4): 2368-2377. doi: 10.1109/TMTT.2023.3314094 [27] FEDULOVA E V, NAZAROV M M, ANGELUTS A A, et al. Studying of dielectric properties of polymers in the terahertz frequency range[J]. Proceedings of SPIE, 2012, 8337: 83370I. doi: 10.1117/12.923855 [28] LI Z, CUI T J, ZHONG X J, et al. Electromagnetic scattering characteristics of PEC targets in the terahertz regime[J]. IEEE Antennas and Propagation Magazine, 2009, 51(1): 39-50. doi: 10.1109/MAP.2009.4939018 [29] XIE Y N, LIU X Y, LI F J, et al. Ultra-wideband enhancement on mid-infrared fingerprint sensing for 2D materials and analytes of monolayers by a metagrating[J]. Nanophotonics, 2020, 9(9): 2927-2935. doi: 10.1515/nanoph-2020-0180 [30] SHEN S L, LIU X D, SHEN Y C, et al. Recent advances in the development of materials for terahertz metamaterial sensing[J]. Advanced Optical Materials, 2022, 10(1): 2101008. doi: 10.1002/adom.202101008 [31] SUN K L, WANG W, HAN ZH H. High-Q resonances in periodic photonic structures[J]. Physical Review B, 2024, 109(8): 085426. doi: 10.1103/PhysRevB.109.085426 [32] YAN D X, FENG Q Y, YANG J, et al. Boosting the terahertz absorption spectroscopy based on the stretchable metasurface[J]. Physical Chemistry Chemical Physics, 2023, 25(1): 612-616. doi: 10.1039/D2CP04618K [33] ROGGENBUCK A, SCHMITZ H, DENINGER A, et al. Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples[J]. New Journal of Physics, 2010, 12(4): 043017. doi: 10.1088/1367-2630/12/4/043017 [34] LIANG Y ZH, CUI W L, LI L X, et al. Large-scale plasmonic nanodisk structures for a high sensitivity biosensing platform fabricated by transfer nanoprinting[J]. Advanced Optical Materials, 2019, 7(7): 1801269. doi: 10.1002/adom.201801269 -