留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能零维非铅钙钛矿薄膜光电探测器

狄佳钰 崔艳 吴瑞祥 芦宾

狄佳钰, 崔艳, 吴瑞祥, 芦宾. 高性能零维非铅钙钛矿薄膜光电探测器[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0214
引用本文: 狄佳钰, 崔艳, 吴瑞祥, 芦宾. 高性能零维非铅钙钛矿薄膜光电探测器[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0214
DI Jia-yu, CUI Yan, WU Rui-xiang, LU Bin. High-performance photodetectors based on zero-dimensional lead-free perovskite thin films[J]. Chinese Optics. doi: 10.37188/CO.2024-0214
Citation: DI Jia-yu, CUI Yan, WU Rui-xiang, LU Bin. High-performance photodetectors based on zero-dimensional lead-free perovskite thin films[J]. Chinese Optics. doi: 10.37188/CO.2024-0214

高性能零维非铅钙钛矿薄膜光电探测器

cstr: 32171.14.CO.2024-0214
基金项目: 山西省基础研究计划(No. 202403021211225);山西师范大学自然科学基金基础研究重点项目
详细信息
    作者简介:

    狄佳钰(1997—),女,山西临汾人,博士,讲师,2018年于天津理工大学获得学士学位,2023年于西安电子科技大学获得博士学位,主要从事钙钛矿单晶制备、光电及高能辐照探测研究工作。E-mail:dijiayu@sxnu.edu.cn

    崔 艳(1980—),女,山西临汾人,副教授,硕士生导师,2002年和2005年于太原理工大学分别获得学士学位和硕士学位,2012年于北京航空航天大学获得工学博士学位,主要从事多智能体系统协同控制、自适应控制等方面的研究。E-mail:cuiyan8013@163.com

    吴瑞祥(1989—),男,山西运城人,博士,副教授,硕士生导师,2011年于中北大学获得学士学位,2017年于山西大学获得博士学位,主要从事发光材料、超快动力学等方面的研究。E-mail:wuruixiang@sxnu.edu.cn

    芦 宾(1990—),男,山西临汾人,博士,副教授,硕士生导师,2013年和2019年于西安电子科技大学分别获得学士学位和博士学位,主要从事新型半导体器件,多值逻辑电路设计以及深度学习赋能EDA工具开发等方面的研究。E-mail:Lubinsxnu@sina.cn

  • 中图分类号: TP394.1;TH691.9

High-performance photodetectors based on zero-dimensional lead-free perovskite thin films

Funds: Supported by the Basic Research Plan of Shanxi Province (No. 202403021211225); Key Project of Natural Science Foundation Basic Research of Shanxi Normal University
More Information
  • 摘要:

    有机-无机杂化非铅钙钛矿因其无生物毒性和环境污染性引起了广泛关注,其中MA3Sb2I9兼具稳定0D结构和非铅的特点,具有应用于稳定、高效光电探测领域的潜力。本文利用MACl后处理的方法来改善反溶剂获得的MA3Sb2I9钙钛矿薄膜的质量,促使MACl与钙钛矿薄膜之间出现Cl-Sb键相互作用,钝化了MA3Sb2I9薄膜表面的I空位及晶界缺陷。该处理不仅能够有效改善薄膜的表面形貌和结晶性,而且降低了薄膜表面缺陷态密度,提高了载流子提取和传输效率。基于优化薄膜制备的自供电光电探测器件的灵敏度由3.89 × 107 Jones提升至5.72 × 108 Jones,提升了一个数量级;上升/下降时间也由37/76 ms降低到31/37 ms,器件的响应速度也得到了提升。

     

  • 图 1  MA3Sb2I9钙钛矿光电探测器的器件结构示意图

    Figure 1.  Schematic diagram of the device structure of MA3Sb2I9 perovskite photodetector

    图 2  不同浓度的 MACl溶液处理后的MA3Sb2I9钙钛矿薄膜的SEM图

    Figure 2.  SEM images of MA3Sb2I9 perovskite thin films treated with different concentrations of MACl solution

    图 3  MACl处理前后的MA3Sb2I9钙钛矿薄膜的(a)UV-vis光谱(b)XRD图

    Figure 3.  (a) UV-vis spectra, (b) XRD patterns of the MA3Sb2I9 perovskite thin films before and after the MACl treated

    图 4  不同浓度MACl处理前后的钙钛矿薄膜XPS(a)全谱,高分辨率的(b)Cl 2p(c)Sb 3d(d)I 3d图谱

    Figure 4.  XPS measurement of the (a) full spectrum, high-resolution spectrum of (b) Cl 2p (c) Sb 3d (d) I 3d of perovskite thin films before and after MACl treatment with different concentrations

    图 5  不同浓度MACl处理前后的MA3Sb2I9钙钛矿薄膜的(a)PL谱(b)TRPL谱

    Figure 5.  (a) Steady-state PL, (b) TRPL spectrum of MA3Sb2I9 perovskite thin films before and after MACl treatment with different concentrations

    图 6  MACl处理前后MA3Sb2I9钙钛矿薄膜的水接触角图

    Figure 6.  Water contact angle of MA3Sb2I9 perovskite thin films before and after MACl treatment

    图 7  MA3Sb2I9钙钛矿光电探测器:(a)经不同浓度MACl后处理的暗态I-V曲线,(b)未处理和最优条件下的光、暗态I-V曲线

    Figure 7.  (a) Dark I-V curves of MA3Sb2I9 perovskite photodetectors treated with different concentrations of MACl, (b) light and dark I-V curves of untreated and optimal conditions

    图 8  MA3Sb2I9钙钛矿光电探测器的(a)Jsc统计图,(b)EQE,(c)R,(d)D*

    Figure 8.  (a) Jsc distribution, (b) R, (c) EQE, (d) D* of the MA3Sb2I9 perovskite photodetector

    图 9  (a)未后处理和(b)4 mg/mL MACl后处理的单周期ON/OFF响应,(c)多周期ON/OFF响应

    Figure 9.  Single-cycle ON/OFF response of (a) without post-treatment and (b) 4 mg/mL MACl post-treatment, (c) Multi-cycle ON/OFF response

  • [1] DONG Q F, FANG Y J, SHAO Y CH, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967-970. doi: 10.1126/science.aaa5760
    [2] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514. doi: 10.1038/nphoton.2014.134
    [3] LIU J, LIU F J, LIU H N, et al. Direct growth of perovskite crystals on metallic electrodes for high-performance electronic and optoelectronic devices[J]. Small, 2020, 16(3): 1906185. doi: 10.1002/smll.201906185
    [4] SUN J, DING L M. Linearly polarization-sensitive perovskite photodetectors[J]. Nano-Micro Letters, 2023, 15(1): 90. doi: 10.1007/s40820-023-01048-y
    [5] SERVICE R F. Perovskite LEDs begin to shine[J]. Science, 2019, 364(6444): 918-918. doi: 10.1126/science.364.6444.918
    [6] QIU X C, XIA J N, LIU Y, et al. Ambient-stable 2D Dion-Jacobson phase tin halide perovskite field-effect transistors with mobility over 1.6 Cm2 V-1s-1[J]. Advanced Materials, 2023, 35(44): 2305648. doi: 10.1002/adma.202305648
    [7] TURREN-CRUZ S H, SALIBA M, MAYER M T, et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells[J]. Energy & Environmental Science, 2018, 11(1): 78-86.
    [8] MENG L, SUN CH K, WANG R, et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%[J]. Journal of the American Chemical Society, 2018, 140(49): 17255-17262. doi: 10.1021/jacs.8b10520
    [9] ZHAO H, WANG SH R, SUN M N, et al. Enhanced stability and optoelectronic properties of MAPbI3 films by a cationic surface-active agent for perovskite solar cells[J]. Journal of Materials Chemistry A, 2018, 6(23): 10825-10834. doi: 10.1039/C8TA00457A
    [10] HE J, SU J, DI J Y, et al. Surface reconstruction strategy improves the all-inorganic CsPbIBr2 based perovskite solar cells and photodetectors performance[J]. Nano Energy, 2022, 94: 106960. doi: 10.1016/j.nanoen.2022.106960
    [11] 冯晓娜, 李丹, 梁春军. 有机卤化物盐对钙钛矿太阳电池器件性能的影响[J]. 半导体光电,2020,41(5):644-647.

    FENG X N, LI D, LIANG CH J. Effects of organic halide salt on the performance of perovskite solar cells[J]. Semiconductor Optoelectronics, 2020, 41(5): 644-647. (in Chinese).
    [12] LIN H R, ZHOU CH K, TIAN Y, et al. Low-dimensional organometal halide perovskites[J]. ACS Energy Letters, 2018, 3(1): 54-62. doi: 10.1021/acsenergylett.7b00926
    [13] ZHANG Y, LI CH Y, ZHAO H Y, et al. Synchronized crystallization in tin-lead perovskite solar cells[J]. Nature Communications, 2024, 15(1): 6887. doi: 10.1038/s41467-024-51361-2
    [14] SLAVNEY A H, HU T, LINDENBERG A M, et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications[J]. Journal of the American Chemical Society, 2016, 138(7): 2138-2141. doi: 10.1021/jacs.5b13294
    [15] YANG B, LI Y J, TANG Y X, et al. Constructing sensitive and fast lead-free single-crystalline perovskite photodetectors[J]. The Journal of Physical Chemistry Letters, 2018, 9(11): 3087-3092. doi: 10.1021/acs.jpclett.8b01116
    [16] HAO F, STOUMPOS C C, CAO D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nature Photonics, 2014, 8(6): 489-494. doi: 10.1038/nphoton.2014.82
    [17] NOEL N K, STRANKS S D, ABATE A, et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications[J]. Energy & Environmental Science, 2014, 7(9): 3061-3068.
    [18] KIM M, KIM G H, LEE T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells[J]. Joule, 2019, 3(9): 2179-2192. doi: 10.1016/j.joule.2019.06.014
    [19] LIANG Q J, LIU J G, CHENG ZH K, et al. Enhancing the crystallization and optimizing the orientation of perovskite films via controlling nucleation dynamics[J]. Journal of Materials Chemistry A, 2016, 4(1): 223-232. doi: 10.1039/C5TA08015K
    [20] MATEEN M, ARAIN Z, YANG Y, et al. MACl-induced intermediate engineering for high-performance mixed-cation perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10535-10543.
    [21] ZHU W D, DENG M Y, ZHANG Z Y, et al. Intermediate phase halide exchange strategy toward a high-quality, thick CsPbBr3 film for optoelectronic applications[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22543-22549.
  • 加载中
图(9)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  54
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-25
  • 录用日期:  2025-01-17
  • 网络出版日期:  2025-02-26

目录

    /

    返回文章
    返回