留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分焦平面偏振相机的像素间串扰研究进展综述

金伟其 薛家安 裘溯 罗琳 刘奇伟

金伟其, 薛家安, 裘溯, 罗琳, 刘奇伟. 分焦平面偏振相机的像素间串扰研究进展综述[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0217
引用本文: 金伟其, 薛家安, 裘溯, 罗琳, 刘奇伟. 分焦平面偏振相机的像素间串扰研究进展综述[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0217
JIN Wei-qi, XUE Jia-an, QIU Su, LUO Lin, LIU Qi-wei. Review of crosstalk between pixels in division of focal plane polarization camera[J]. Chinese Optics. doi: 10.37188/CO.2024-0217
Citation: JIN Wei-qi, XUE Jia-an, QIU Su, LUO Lin, LIU Qi-wei. Review of crosstalk between pixels in division of focal plane polarization camera[J]. Chinese Optics. doi: 10.37188/CO.2024-0217

分焦平面偏振相机的像素间串扰研究进展综述

cstr: 32171.14.CO.2024-0217
基金项目: 国家自然科学基金面上项目(No. 62171024)
详细信息
    作者简介:

    金伟其(1961—),男,上海市人,博士,教授,博士生导师,1981年2月于北京工业学院获得工学学士学位,1990年9月于北京理工大学获得工学博士学位,现主要从事夜视与红外技术、光电图像处理、光电检测与仪器、偏振成像技术等研究。E-mail:jinwq@bit.edu.cn

    薛家安(1994—),男,河北石家庄人,博士研究生,2017年于北京理工大学获得学士学位,主要从事复眼和偏振成像技术方面的研究。E-mail:3120185345@bit.edu.cn

  • 中图分类号: O436.3

Review of crosstalk between pixels in division of focal plane polarization camera

Funds: Supported by National Natural Science Foundtion of China (No. 62171024)
More Information
  • 摘要:

    分焦平面偏振相机是一种应用广泛的集成化偏振成像系统,微偏振片阵列的像素间串扰是此类偏振成像系统特有的干扰因素,且串扰光强随入射光偏振特性变化而变化,给目标偏振信息的测量带来了误差。本文回顾了偏振串扰模型的发展历程,将相关研究中涉及到影响串扰的全部因素进行了归纳。以感光芯片参数和光学系统参数为系统关键因素,讨论了相机应用过程中的串扰原因-结果模型以及与时间噪声的关系,分析了串扰导致的各像素检偏参数的变化结果,重点总结了串扰的因素相关性、实验可重复性、误差随机性和参数可标定性,并对串扰模型的未来发展趋势进行了展望。

     

  • 图 1  偏振DOFP阵列及其串扰示意图 (a) 阵列结构[11],(b) 像素B接收微偏振片A串扰

    Figure 1.  Schematic diagram of polarization-DOFP array and its Crosstalk (a) Array structure[11], (b) B-pixel receives Crosstalk from A-micro-polarizer

    图 2  串扰模式[1] (a)光串扰,(b)电串扰

    Figure 2.  Crosstalk patterns[1] (a) optical (b) electrical crosstalk

    图 3  衍射光强分布[2] (a) 10 μm超级像素的仿真结构和(b) 0.5 μm,(c) 1 μm的FDTD仿真;(d) 30 μm像素实测结果

    Figure 3.  Diffraction intensity distribution[2] (a) 10 μm superpixel structure (b) 0.5/(c)1 μm FDTD simulation; (d) 30 μm pixel result

    图 4  消光比-准直光入射角关系[4]

    Figure 4.  Measured extinction ratio - light incident angle relation[4]

    图 5  偏振度测量值和偏振角测量误差-准直光入射角关系[5]

    Figure 5.  Measured DoP / AoP error - light incident angle relation[5]

    图 6  三种焦距镜头在不同F数的消光比测量值[8]

    Figure 6.  Measured e of 3 focal length lenses as F/# changes[8]

    图 7  串扰影响测量结果[8]

    Figure 7.  Crosstalk changes measured Stokes result[8]

    图 8  像素交界面示意图[10]

    Figure 8.  Cross-section between pixels[10]

    图 9  MPA-CMOS耦合结构[11] (a)传统贴合式,(b) 索尼沉积式

    Figure 9.  MPA-CMOS coupled-structure[11] (a) Conventional bonding on-glass, (b) Sony deposition on-chip

    图 10  优化结构[11] (a)深沟槽设计,(b)比传统结构的消光比更优

    Figure 10.  Optimized structure[11] (a) Deep trench, (b) Higher extinction ratio compared with traditional structure

    图 11  FDTD仿真[15] (a) MPA光栅结构,(b)光栅衍射结果

    Figure 11.  FDTD simulation[15] (a) MPA grating structure, (b) diffraction result

    图 12  直射串扰光路[17] (a)贴合式,(b)沉积式

    Figure 12.  Direct crosstalk optical path[17] (a) On-glass, (b) On-chip

    图 13  串扰模型[18] (a) ①~⑤串扰路径 (b) 串扰系数分布

    Figure 13.  Crosstalk model[18] (a) Crosstalk paths ①~⑤ (b) Crosstalk coefficients distribution

    图 14  数值关系[18] (a)串扰系数-条件数 (b) F数-消光比-条件数

    Figure 14.  Numerical relation[18] (a) Crosstalk coefficient - condition number (b) F/# - extinction ratio - condition number

    图 15  偏振红外探测器仿真[20] (a) 衬底厚度与消光比关系 (b)波长5 μm的TM和 (c)TE入射光A的光场分布 (d)波长4.5 μm和(e)5 μm的TE入射光B和C的光场分布(A、B和C光在(a)中有标注)

    Figure 15.  Simulation of polarization infrared detector[20] (a) Extinction ratio-thickness of substrate relation. The light field distribution of (b) TM and (c) TE incident light A of wavelengths 5μm, and TE incident light of wavelengths (d) 4.5 μm B and (e) 5 μm C. Light A, B, and C are marked in (a).

    图 16  判断串扰影响因素的实验测量系统[21]

    Figure 16.  Experimental measurement system[21] for judging the influencing factors of crosstalk

    图 17  不同镜头的F数-量化误差估计[21] (a) 短波段 (b)长波段

    Figure 17.  F/#-Quantization error estimation of different lenses[21] (a) short wave band (b) long wave band

    图 18  F数对串扰影响[22] (a)有效焦距因素,(b)光圈因素

    Figure 18.  F/# affects crosstalk[22] (a) focal length factor, (b) aperture factor

    图 19  检偏矩阵误差[22] (a)贴合式,(b)沉积式。黑色横线代表数据范围,红色横线代表中位数

    Figure 19.  Analysis matrix error[22] (a) On-glass, (b) On-chip. The black mark indicates the data deviation and the central red mark indicates the median

    图 20  串扰抑制结构 (a) 三星电子全深度沟槽隔离[23],(b) 安光所衬底网格[24],(c) 大连理工仿生复眼设计[25]

    Figure 20.  Crosstalk suppression structure (a) full-depth deep-trench isolation[23] (b) grid substrate[24] (c) compound eyes diaphragm[25]

    图 21  MPA-传感器间距分别为1,5,10,15,30和50 μm[29]

    Figure 21.  MPA- detector gap is 1, 5, 10, 15, 30 and 50 μm[29]

    表  1  优化感光芯片参数/结构以抑制串扰的相关研究

    Table  1.   Research on optimizing sensor's parameters/structure to suppress crosstalk

    芯片
    参数
    减小
    MPA-CMOS间距
    优化排布 加入沟
    槽隔离
    加入视
    场光阑
    FDTD
    仿真
    A. A. Cruz-
    Cabrera[2-3]
    孙雪倩[15-16]
    Zhou J[20] 罗海波[29]
    A. A. Cruz-
    Cabrera[2-3]
    Fourspring K[10]
    孙雪倩[15-16]
    Nie A[24]
    实验
    测量
    A. A. Cruz-Cabrera[2-3]
    Myhre G[8]
    Maruyama Y[11]
    Kim Y[23] Maruyama Y[11]
    Kim Y[23]
    Liu J[25]
    下载: 导出CSV

    表  2  各传感器样机最佳消光比测量结果

    Table  2.   The best extinction ratio results of each sensor prototype

    2010[4]2012[8]2015[22]2018[16]2018[11]2019[18], 2022[22]2021[16]
    型号IMX174
    Sony
    Polarcam
    G5 4D

    Sony
    IMX250MZR
    Sony
    贴合3.91754.276.4
    沉积5885~350
    下载: 导出CSV

    表  3  优化镜头状态以抑制串扰的相关研究

    Table  3.   Research on optimizing lens status to suppress crosstalk

    光学
    参数
    ①准直光
    入射角
    ②F数③焦距/物距
    实验
    测量
    Gruev V[4-6]
    Maruyama Y[11]
    Myhre G[8]
    Fourspring K[10]
    孙翯[12-14]
    Deliwala A[18] Lane C[21]
    Giménez-Henríquez Y C[22]
    Myhre G[8]
    Lane C[21]
    Giménez-
    Henríquez Y C[22]
    下载: 导出CSV

    表  4  串扰-噪声关系的相关研究

    Table  4.   Research on crosstalk-noise Relation

    串扰观点①随机噪声②误差传递③固定偏差
    相关研究Jones M W[1]孙翯[12-16]
    Deliwala A[18, 19]
    Gruev V[7] Fourspring K[9, 10]
    Lane C[21] Chen Z[26]
    下载: 导出CSV

    表  5  串扰数学模型的相关研究

    Table  5.   Research on mathematical model of crosstalk

    串扰模型 邻边/邻角
    模型
    均匀对称模型 非均匀的
    对称模型
    相关研究 Jones M W[1] Deliwala A[18, 19] 孙翯[14-16]
    示意图
    下载: 导出CSV
  • [1] JONES M W, PERSONS C M. Performance predictions for micro-polarizer array imaging polarimeters[J]. Proceedings of SPIE, 2007, 6682: 668208. doi: 10.1117/12.736225
    [2] CRUZ-CABRERA A A, KEMME S A, WENDT J R, et al. Polarimetric imaging cross talk effects from glue separation between FPA and micropolarizer arrays at the MWIR[J]. Proceedings of SPIE, 2007, 6478: 64780Q. doi: 10.1117/12.702084
    [3] KEMME S A, CRUZ-CABRERA A A, NANDY P, et al. Micropolarizer arrays in the MWIR for snapshot polarimetric imaging[J]. Proceedings of SPIE, 2007, 6556: 655604. doi: 10.1117/12.720036
    [4] GRUEV V, PERKINS R, YORK T. CCD polarization imaging sensor with aluminum nanowire optical filters[J]. Optics Express, 2010, 18(18): 19087-19094. doi: 10.1364/OE.18.019087
    [5] YORK T, GRUEV V. Optical characterization of a polarization imager[C]. IEEE International Symposium of Circuits and Systems (ISCAS), IEEE, 2011: 1576-1579.
    [6] YORK T, GRUEV V. Characterization of a visible spectrum division-of-focal-plane polarimeter[J]. Applied Optics, 2012, 51(22): 5392-5400. doi: 10.1364/AO.51.005392
    [7] POWELL S B, GRUEV V. Calibration methods for division-of-focal-plane polarimeters[J]. Optics Express, 2013, 21(18): 21039-21055. doi: 10.1364/OE.21.021040
    [8] MYHRE G, HSU W L, PEINADO A, et al. Liquid crystal polymer full-stokes division of focal plane polarimeter[J]. Optics Express, 2012, 20(25): 27393-27409. doi: 10.1364/OE.20.027393
    [9] FOURSPRING K, NINKOV Z. Optical characterization of a micro-grid polarimeter[J]. Proceedings of SPIE, 2012, 8364: 83640M. doi: 10.1117/12.919301
    [10] VOROBIEV D, NINKOV Z, GARTLEY M. Polarization in a snap: imaging polarimetry with micropolarizer arrays[J]. Proceedings of SPIE, 2014, 9099: 909904.
    [11] MARUYAMA Y, TERADA T, YAMAZAKI T, et al. 3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2544-2551. doi: 10.1109/TED.2018.2829190
    [12] SUN H, WANG D J, CHEN CH, et al. Effect of sensor SNR and extinction ratio on polarimetric imaging error for nanowire-based systems[J]. Applied Optics, 2018, 57(25): 7344-7351. doi: 10.1364/AO.57.007344
    [13] 王德江, 孙翯, 孙雪倩. 消光比与探测器噪声对基于纳米线栅偏振成像系统偏振精度的影响[J]. 光学 精密工程,2018,26(10):2371-2379. doi: 10.3788/OPE.20182610.2371

    WANG D J, SUN H, SUN X Q. Effect of extinction ratio and detector noise on polarization accuracy of nanometer wire grid polarization imaging system[J]. Optics and Precision Engineering, 2018, 26(10): 2371-2379. (in Chinese). doi: 10.3788/OPE.20182610.2371
    [14] 孙翯. 纳米线栅偏振成像系统应用研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.

    SUN H. Application research of nanowire polarization imaging system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021. (in Chinese).
    [15] SUN X Q, SUN H, WANG D J, et al. Extinction ratio and image accuracy of relayed-microgrid polarimetric imaging systems: theory and experiment[J]. Applied Optics, 2020, 59(8): 2298-2307. doi: 10.1364/AO.386216
    [16] 孙雪倩. 灵巧型偏振/强度共口径光学成像系统的研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.

    SUN X Q. Research on smart polarization/intensity common aperture optical imaging system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021. (in Chinese).
    [17] HAGEN N, SHIBATA S, OTANI Y. Calibration and performance assessment of microgrid polarization cameras[J]. Optical Engineering, 2019, 58(8): 082408.
    [18] DELIWALA A. Crosstalk and noise in division-of-focal-plane polarimeters and polarization imaging applications[D]. Urbana: University of Illinois at Urbana-Champaign, 2019.
    [19] DELIWALA A, GRUEV V. Optical crosstalk in division of focal plane imagers[J]. Proceedings of SPIE, 2020, 11412: 114120F.
    [20] ZHOU J, ZHOU Y, SHI Y, et al. The light crosstalk suppression between adjacent pixels in polarization-integrated infrared detectors[J]. Proceedings of SPIE, 2020, 11427: 1142738.
    [21] LANE C, RODE D, RÖSGEN T. Calibration of a polarization image sensor and investigation of influencing factors[J]. Applied Optics, 2022, 61(6): C37-C45. doi: 10.1364/AO.437391
    [22] GIMÉNEZ-HENRÍQUEZ Y C. Characterization and calibration of polarizer filter array stokes imaging systems[D]. Mulhouse: Université de Haute Alsace, 2022.
    [23] KIM Y, CHOI W, PARK D, et al. A 1/2.8-inch 24Mpixel CMOS image sensor with 0.9μm unit pixels separated by full-depth deep-trench isolation[C]. IEEE International Solid-State Circuits Conference-(ISSCC), IEEE, 2018: 84-86.
    [24] NIE A R, QIU ZH W, SUN X B, et al. Numerical study of a high-extinction-ratio micro-polarizer array with a metal grid substrate[J]. Applied Optics, 2022, 61(33): 9795-9800. doi: 10.1364/AO.472707
    [25] LIU J Y, ZHANG R, LI Y H, et al. A bio-inspired polarization navigation sensor based on artificial compound eyes[J]. Bioinspiration & Biomimetics, 2022, 17(4): 046017.
    [26] CHEN ZH Y, WANG X, LIANG R G. Calibration method of microgrid polarimeters with image interpolation[J]. Applied Optics, 2015, 54(5): 995-1001. doi: 10.1364/AO.54.000995
    [27] FEI H, LI F M, CHEN W C, et al. Calibration method for division of focal plane polarimeters[J]. Applied Optics, 2018, 57(18): 4992-4996. doi: 10.1364/AO.57.004992
    [28] YANG J, QIU S, JIN W Q, et al. Temporal and spatial error model for estimating the measurement precision of the division of focal plane polarimeters[J]. Optics Express, 2021, 29(13): 20808-20828. doi: 10.1364/OE.428202
    [29] 罗海波, 张俊超, 盖兴琴, 等. 偏振成像技术的发展现状与展望(特邀)[J]. 红外与激光工程,2022,51(1):20210987.

    LUO H B, ZHANG J CH, GAI X Q, et al. Development status and prospects of polarization imaging technology (invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210987. (in Chinese).
  • 加载中
图(21) / 表(5)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  18
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-03-19

目录

    /

    返回文章
    返回