留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于冲击波测量的硅MEMS光纤法珀压力传感器

殷建雄 王军 王昊星 万顺 刘佳 贾平岗

殷建雄, 王军, 王昊星, 万顺, 刘佳, 贾平岗. 用于冲击波测量的硅MEMS光纤法珀压力传感器[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0010
引用本文: 殷建雄, 王军, 王昊星, 万顺, 刘佳, 贾平岗. 用于冲击波测量的硅MEMS光纤法珀压力传感器[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0010
YIN Jian-xiong, WANG Jun, WANG Hao-xing, WAN Shun, LIU Jia, JIA Ping-gang. Silicon MEMS fiber-optic Fabry Perot pressure sensor for shock wave measurements[J]. Chinese Optics. doi: 10.37188/CO.2025-0010
Citation: YIN Jian-xiong, WANG Jun, WANG Hao-xing, WAN Shun, LIU Jia, JIA Ping-gang. Silicon MEMS fiber-optic Fabry Perot pressure sensor for shock wave measurements[J]. Chinese Optics. doi: 10.37188/CO.2025-0010

用于冲击波测量的硅MEMS光纤法珀压力传感器

cstr: 32171.14.CO.2025-0010
基金项目: 国家自然科学基金(No. 51935011);山西省科技创新人才团队专项资助(No. 202204051001016)
详细信息
    作者简介:

    贾平岗(1982—),男,陕西宝鸡人,博士,教授,博士生导师,2006年7月毕业于中国矿业大学理学院获应用物理学学士学位,2013年6月毕业于重庆大学光电工程学院获仪器科学与技术博士学位,2013年9月开始工作于中北大学仪器与电子学院,2022年9月开始工作于中北大学半导体与物理学院,主要从事极端环境光纤传感技术研究。E-mail:pgjia@nuc.edu.cn

  • 中图分类号: TP212

Silicon MEMS fiber-optic Fabry Perot pressure sensor for shock wave measurements

Funds: Supported by National Natural Science Foundation of China (No. 51935011); Special Fund for Science and Technology Innovation Group of Shanxi Province (No. 202204051001016)
More Information
  • 摘要:

    本文提出了一种基于微机电系统(MEMS)技术的光纤法布里-珀罗压力传感器,可用于冲击波等瞬态压力测量。该传感器敏感单元由深反应离子刻蚀(DRIE)后的单晶硅和BF33玻璃晶圆通过阳极键合制成,并通过激光熔接技术实现光纤与敏感单元的无胶化集成。通过搭建信号解调实验平台,对静态和动态压力环境下传感器性能进行测试。实验结果表明,该传感器在0~10 MPa压力范围内具有良好的线性响应,满量程非线性误差为0.41%,迟滞为0.37%,传感器的上升时间为8.5 μs。该传感器具备抗电磁干扰、可批量化制备、一致性高、成本低等优点,理论谐振频率为1.39 MHz,展示了其在爆炸场等恶劣环境下进行动态压力测量的良好应用前景。

     

  • 图 1  传感器原理及结构示意图

    Figure 1.  Block diagram of image measuring system

    图 2  敏感膜片尺寸与特征频率和灵敏度关系数值仿真

    Figure 2.  Numerical simulation of the relationship between diaphragm size and eigenfrequency and sensitivity

    图 3  敏感单元制作工艺流程图

    Figure 3.  Process flow diagram for pressure sensor production

    图 4  传感器敏感单元集成与封装

    Figure 4.  Integration and packaging of sensor sensitive units

    图 5  传感器静态压力测试示意图

    Figure 5.  Schematic diagram of static pressure testing

    图 6  传感器静压测试结果

    Figure 6.  Sensor static pressure test results

    图 7  三波长动态解调系统原理图

    Figure 7.  Schematic diagram of three-wavelength dynamic demodulation system

    图 8  激波管测试示意图

    Figure 8.  Schematic diagram of the shock tube test

    图 9  不同压力下激波截面验证结果

    Figure 9.  Verification results of shock wave cross section at different pressures

    图 10  光纤传感器与压电传感器输出曲线

    Figure 10.  Fiber optic sensor and piezoelectric sensor output curves

    表  1  压力传感器的结构参数

    Table  1.   Structural parameters of the pressure sensor

    PerformanceSymbolValue
    Diaphragm radius/mmr0.8
    Diaphragm thickness/mmh0.245
    Measurement range/MPaP0~10
    Sensitivity/nm·MPa−1S113
    Natural frequency/MHzf1.39
    下载: 导出CSV
  • [1] 轩春青, 轩志伟, 赖富文. 压力传感器测试系统的动态校准及特性分析[J]. 传感技术学报,2015,28(7):982-986. doi: 10.3969/j.issn.1004-1699.2015.07.007

    XUAN CH Q, XUAN ZH W, LAI F W. The dynamic calibration of pressure sensor test system and sensitivity analysis[J]. Chinese Journal of Sensors and Actuators, 2015, 28(7): 982-986. (in Chinese). doi: 10.3969/j.issn.1004-1699.2015.07.007
    [2] 刘东来, 王伟魁, 李文博, 等. 冲击波超压传感器研究现状[J]. 遥测遥控,2019,40(5):7-15. doi: 10.3969/j.issn.2095-1000.2019.05.002

    LIU D L, WANG W K, LI W B, et al. Research status of shock wave overpressure sensor[J]. Journal of Telemetry, Tracking and Command, 2019, 40(5): 7-15. (in Chinese). doi: 10.3969/j.issn.2095-1000.2019.05.002
    [3] ZHANG Y J, PENG P, LIN T, et al. Research on the shock wave overpressure peak measurement method based on equilateral ternary array[J]. Sensors, 2024, 24(6): 1860. doi: 10.3390/s24061860
    [4] 施宇成, 孔德仁, 徐春冬, 等. 爆炸场冲击波压力测量及其传感器技术现状分析[J]. 测控技术,2022,41(11):1-10,34.

    SHI Y CH, KONG D R, XU CH D, et al. Status analysis of shock wave pressure measurement and sensor technology in explosion field[J]. Measurement & Control Technology, 2022, 41(11): 1-10,34. (in Chinese).
    [5] POEGGEL S, TOSI D, DURAIBABU D, et al. Optical fibre pressure sensors in medical applications[J]. Sensors, 2015, 15(7): 17115-17148. doi: 10.3390/s150717115
    [6] RORIZ P, SILVA S, FRAZÃO O, et al. Optical fiber temperature sensors and their biomedical applications[J]. Sensors, 2020, 20(7): 2113. doi: 10.3390/s20072113
    [7] 付雨薇, 王睿楠, 唐文婷, 等. 用于高压测量的MEMS硅-玻光纤FP压力传感器[J]. 中国光学(中英文),2024,17(4):771-779.

    FU Y W, WANG R N, TANG W T, et al. MEMS silicon-glass fiber-optic FP pressure sensor for high-pressure measurements[J]. Chinese Optics, 2024, 17(4): 771-779. (in Chinese).
    [8] WATSON S, MACPHERSON W N, BARTON J S, et al. Investigation of shock waves in explosive blasts using fibre optic pressure sensors[J]. Measurement Science and Technology, 2006, 17(6): 1337-1342. doi: 10.1088/0957-0233/17/6/008
    [9] PARKES W, DJAKOV V, BARTON J S, et al. Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air[J]. Journal of Micromechanics and Microengineering, 2008, 17(7): 1334-1342.
    [10] WU N, ZOU X T, TIAN Y, et al. An ultra-fast fiber optic pressure sensor for blast event measurements[J]. Measurement Science and Technology, 2012, 23(5): 055102. doi: 10.1088/0957-0233/23/5/055102
    [11] 陈显, 余尚江, 周会娟, 等. 一种F-P光纤爆炸压力传感器设计[J]. 传感器与微系统,2018,37(2):99-101,105.

    CHEN X, YU SH J, ZHOU H J, et al. Design of a F-P optical fiber explosion pressure sensor[J]. Transducer and Microsystem Technologies, 2018, 37(2): 99-101,105. (in Chinese).
    [12] WANG ZH, WEN G R, WU Z T, et al. Fiber optic method for obtaining the peak reflected pressure of shock waves[J]. Optics Express, 2018, 26(12): 15199-15210. doi: 10.1364/OE.26.015199
    [13] CHU CH L, WANG J J, QIU J Y. Miniature high-frequency response, high-pressure-range dynamic pressure sensor based on all-silica optical fiber Fabry-Perot cavity[J]. IEEE Sensors Journal, 2021, 21(12): 13296-13304. doi: 10.1109/JSEN.2021.3068456
    [14] ZELAN M, ARRHÉN F, JARLEMARK P, et al. Characterization of a fiber-optic pressure sensor in a shock tube system for dynamic calibrations[J]. Metrologia, 2015, 52(1): 48-53. doi: 10.1088/0026-1394/52/1/48
    [15] LIU Y Y, JING ZH G, LIU Q, et al. Differential-pressure fiber-optic airflow sensor for wind tunnel testing[J]. Optics Express, 2020, 28(17): 25101-25113. doi: 10.1364/OE.401677
    [16] DI GIOVANNI M. Flat and Corrugated Diaphragm Design Handbook[M]. New York: Routledge, 2017.
    [17] 李加顺, 贾平岗, 王军, 等. 基于石英MEMS技术的光纤法布里-珀罗高温压力传感器(英文)[J]. 光子学报,2022,51(6):0606005. doi: 10.3788/gzxb20225106.0606005

    LI J SH, JIA P G, WANG J, et al. Silica-MEMS-based Fiber-optic Fabry-Perot pressure sensor for high-temperature applications[J]. Acta Photonica Sinica, 2022, 51(6): 0606005. doi: 10.3788/gzxb20225106.0606005
    [18] 李文豪, 贾平岗, 王军, 等. 基于硅MEMS技术的高灵敏度微型光纤法布里-珀罗压力传感器[J]. 光子学报,2024,53(5):0553110. doi: 10.3788/gzxb20245305.0553110

    LI W H, JIA P G, WANG J, et al. High sensitivity micro fiber Fabry Perot pressure sensor based on silicon MEMS technology[J]. Acta Photonica Sinica, 2024, 53(5): 0553110. (in Chinese). doi: 10.3788/gzxb20245305.0553110
    [19] 任乾钰, 贾平岗, 钱江, 等. 多腔型光纤法布里-珀罗传感器三波长动态解调技术[J]. 光子学报,2022,51(9):0906005. doi: 10.3788/gzxb20225109.0906005

    REN Q Y, JIA P G, QIAN J, et al. Three-wavelength dynamic demodulation technique for multi-cavity fiber Fabry-Perot sensor[J]. Acta Photonica Sinica, 2022, 51(9): 0906005. (in Chinese). doi: 10.3788/gzxb20225109.0906005
    [20] 杨凡, 孔德仁, 姜波, 等. 基于激波管校准的冲击波压力传感器动态特性研究[J]. 南京理工大学学报,2017,41(3):330-336.

    YANG F, KONG D R, JIANG B, et al. Dynamic characteristic of shock wave pressure sensor based on shock tube calibration[J]. Journal of Nanjing University of Science and Technology, 2017, 41(3): 330-336. (in Chinese).
    [21] 田锐, 魏刚, 张涵哲, 等. 基于空气激波管的GFRP层合板抗爆性能研究[J]. 复合材料科学与工程,2023(3):68-75.

    TIAN R, WEI G, ZHANG H ZH, et al. Study of the blast resistance of GFRP laminates based on air shock tube[J]. Composites Science and Engineering, 2023(3): 68-75. (in Chinese).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  13
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-03-24

目录

    /

    返回文章
    返回