-
摘要:
本文提出了一种基于微机电系统(MEMS)技术的光纤法布里-珀罗压力传感器,可用于冲击波等瞬态压力测量。该传感器敏感单元由深反应离子刻蚀(DRIE)后的单晶硅和BF33玻璃晶圆通过阳极键合制成,并通过激光熔接技术实现光纤与敏感单元的无胶化集成。通过搭建信号解调实验平台,对静态和动态压力环境下传感器性能进行测试。实验结果表明,该传感器在0~10 MPa压力范围内具有良好的线性响应,满量程非线性误差为0.41%,迟滞为0.37%,传感器的上升时间为8.5 μs。该传感器具备抗电磁干扰、可批量化制备、一致性高、成本低等优点,理论谐振频率为1.39 MHz,展示了其在爆炸场等恶劣环境下进行动态压力测量的良好应用前景。
Abstract:A fiber-optic Fabry-Perot pressure sensor based on microelectromechanical systems (MEMS) technology is proposed for transient pressure measurements such as shock waves. The sensitive unit is made of etched silicon wafers and BF33 glass wafers through anodic bonding, and the adhesive-free integration of the optical fiber and the sensitive unit is realized by laser fusion bonding technology. A signal demodulation experiment platform was built to comprehensively evaluate the pressure sensing characteristics of sensors in static and dynamic pressure environments. The test results show that the sensor has a good linear response over the pressure range of 0-10 MPa, with a full-scale nonlinear error of 0.41% and a hysteresis of 0.37%. In dynamic pressure measurement, the sensor has a rise time of 8.5μs. The sensor has the advantages of anti-electromagnetic interference, high consistency, low cost, and has a theoretical resonant frequency of 1.39 MHz, demonstrating the prospect of its wide application for dynamic pressure measurements in harsh environments such as explosion fields.
-
Key words:
- Fabry-Perot /
- shock wave /
- fiber optic sensor /
- pressure measurement /
- shock tube
-
表 1 压力传感器的结构参数
Table 1. Structural parameters of the pressure sensor
Performance Symbol Value Diaphragm radius/mm r 0.8 Diaphragm thickness/mm h 0.245 Measurement range/MPa P 0~10 Sensitivity/nm·MPa−1 S 113 Natural frequency/MHz f 1.39 -
[1] 轩春青, 轩志伟, 赖富文. 压力传感器测试系统的动态校准及特性分析[J]. 传感技术学报,2015,28(7):982-986. doi: 10.3969/j.issn.1004-1699.2015.07.007XUAN CH Q, XUAN ZH W, LAI F W. The dynamic calibration of pressure sensor test system and sensitivity analysis[J]. Chinese Journal of Sensors and Actuators, 2015, 28(7): 982-986. (in Chinese). doi: 10.3969/j.issn.1004-1699.2015.07.007 [2] 刘东来, 王伟魁, 李文博, 等. 冲击波超压传感器研究现状[J]. 遥测遥控,2019,40(5):7-15. doi: 10.3969/j.issn.2095-1000.2019.05.002LIU D L, WANG W K, LI W B, et al. Research status of shock wave overpressure sensor[J]. Journal of Telemetry, Tracking and Command, 2019, 40(5): 7-15. (in Chinese). doi: 10.3969/j.issn.2095-1000.2019.05.002 [3] ZHANG Y J, PENG P, LIN T, et al. Research on the shock wave overpressure peak measurement method based on equilateral ternary array[J]. Sensors, 2024, 24(6): 1860. doi: 10.3390/s24061860 [4] 施宇成, 孔德仁, 徐春冬, 等. 爆炸场冲击波压力测量及其传感器技术现状分析[J]. 测控技术,2022,41(11):1-10,34.SHI Y CH, KONG D R, XU CH D, et al. Status analysis of shock wave pressure measurement and sensor technology in explosion field[J]. Measurement & Control Technology, 2022, 41(11): 1-10,34. (in Chinese). [5] POEGGEL S, TOSI D, DURAIBABU D, et al. Optical fibre pressure sensors in medical applications[J]. Sensors, 2015, 15(7): 17115-17148. doi: 10.3390/s150717115 [6] RORIZ P, SILVA S, FRAZÃO O, et al. Optical fiber temperature sensors and their biomedical applications[J]. Sensors, 2020, 20(7): 2113. doi: 10.3390/s20072113 [7] 付雨薇, 王睿楠, 唐文婷, 等. 用于高压测量的MEMS硅-玻光纤FP压力传感器[J]. 中国光学(中英文),2024,17(4):771-779.FU Y W, WANG R N, TANG W T, et al. MEMS silicon-glass fiber-optic FP pressure sensor for high-pressure measurements[J]. Chinese Optics, 2024, 17(4): 771-779. (in Chinese). [8] WATSON S, MACPHERSON W N, BARTON J S, et al. Investigation of shock waves in explosive blasts using fibre optic pressure sensors[J]. Measurement Science and Technology, 2006, 17(6): 1337-1342. doi: 10.1088/0957-0233/17/6/008 [9] PARKES W, DJAKOV V, BARTON J S, et al. Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air[J]. Journal of Micromechanics and Microengineering, 2008, 17(7): 1334-1342. [10] WU N, ZOU X T, TIAN Y, et al. An ultra-fast fiber optic pressure sensor for blast event measurements[J]. Measurement Science and Technology, 2012, 23(5): 055102. doi: 10.1088/0957-0233/23/5/055102 [11] 陈显, 余尚江, 周会娟, 等. 一种F-P光纤爆炸压力传感器设计[J]. 传感器与微系统,2018,37(2):99-101,105.CHEN X, YU SH J, ZHOU H J, et al. Design of a F-P optical fiber explosion pressure sensor[J]. Transducer and Microsystem Technologies, 2018, 37(2): 99-101,105. (in Chinese). [12] WANG ZH, WEN G R, WU Z T, et al. Fiber optic method for obtaining the peak reflected pressure of shock waves[J]. Optics Express, 2018, 26(12): 15199-15210. doi: 10.1364/OE.26.015199 [13] CHU CH L, WANG J J, QIU J Y. Miniature high-frequency response, high-pressure-range dynamic pressure sensor based on all-silica optical fiber Fabry-Perot cavity[J]. IEEE Sensors Journal, 2021, 21(12): 13296-13304. doi: 10.1109/JSEN.2021.3068456 [14] ZELAN M, ARRHÉN F, JARLEMARK P, et al. Characterization of a fiber-optic pressure sensor in a shock tube system for dynamic calibrations[J]. Metrologia, 2015, 52(1): 48-53. doi: 10.1088/0026-1394/52/1/48 [15] LIU Y Y, JING ZH G, LIU Q, et al. Differential-pressure fiber-optic airflow sensor for wind tunnel testing[J]. Optics Express, 2020, 28(17): 25101-25113. doi: 10.1364/OE.401677 [16] DI GIOVANNI M. Flat and Corrugated Diaphragm Design Handbook[M]. New York: Routledge, 2017. [17] 李加顺, 贾平岗, 王军, 等. 基于石英MEMS技术的光纤法布里-珀罗高温压力传感器(英文)[J]. 光子学报,2022,51(6):0606005. doi: 10.3788/gzxb20225106.0606005LI J SH, JIA P G, WANG J, et al. Silica-MEMS-based Fiber-optic Fabry-Perot pressure sensor for high-temperature applications[J]. Acta Photonica Sinica, 2022, 51(6): 0606005. doi: 10.3788/gzxb20225106.0606005 [18] 李文豪, 贾平岗, 王军, 等. 基于硅MEMS技术的高灵敏度微型光纤法布里-珀罗压力传感器[J]. 光子学报,2024,53(5):0553110. doi: 10.3788/gzxb20245305.0553110LI W H, JIA P G, WANG J, et al. High sensitivity micro fiber Fabry Perot pressure sensor based on silicon MEMS technology[J]. Acta Photonica Sinica, 2024, 53(5): 0553110. (in Chinese). doi: 10.3788/gzxb20245305.0553110 [19] 任乾钰, 贾平岗, 钱江, 等. 多腔型光纤法布里-珀罗传感器三波长动态解调技术[J]. 光子学报,2022,51(9):0906005. doi: 10.3788/gzxb20225109.0906005REN Q Y, JIA P G, QIAN J, et al. Three-wavelength dynamic demodulation technique for multi-cavity fiber Fabry-Perot sensor[J]. Acta Photonica Sinica, 2022, 51(9): 0906005. (in Chinese). doi: 10.3788/gzxb20225109.0906005 [20] 杨凡, 孔德仁, 姜波, 等. 基于激波管校准的冲击波压力传感器动态特性研究[J]. 南京理工大学学报,2017,41(3):330-336.YANG F, KONG D R, JIANG B, et al. Dynamic characteristic of shock wave pressure sensor based on shock tube calibration[J]. Journal of Nanjing University of Science and Technology, 2017, 41(3): 330-336. (in Chinese). [21] 田锐, 魏刚, 张涵哲, 等. 基于空气激波管的GFRP层合板抗爆性能研究[J]. 复合材料科学与工程,2023(3):68-75.TIAN R, WEI G, ZHANG H ZH, et al. Study of the blast resistance of GFRP laminates based on air shock tube[J]. Composites Science and Engineering, 2023(3): 68-75. (in Chinese). -