-
摘要:
针对现有瑞奇-康芒法检测大口径平面反射镜的数据处理方法中存在通用性较低、检测中的数据易受环境稳定性影响等问题,本文提出了一种灵敏度矩阵分析结合光线追迹的数据处理方法,对瑞奇-康芒法检测获得的数据进行处理分析,实现了对大口径平面镜的高精度面形检测。首先在Zemax软件中建立了瑞奇-康芒光学检测模型,并采用光线追迹算法获得了灵敏度矩阵,使用灵敏度矩阵计算并分离检测过程中存在的误差,相比直接采用泽尼克拟合方式去除像差的方法具有更高的检测精度,避免了近似拟合对数据处理结果的影响,其次对基于灵敏度矩阵的数据处理算法进行了仿真验证。将该算法应用于口径200 mm平面镜的瑞奇-康芒法检测实验,通过与直接采用干涉仪检测结果的交叉对比,验证了该数据处理算法的正确性。进而将该方法应用于口径为2.2 m平面镜的制造流程中,最终获得的面形结果均方根误差优于1/50
$\lambda $ 。该方法为大口径平面镜的瑞奇-康芒检测提供了一种高效可靠的数据处理算法,具有明显的工程应用价值。Abstract:To address the limitations of conventional data processing approaches in Ritchey-Common method-based inspection of large-aperture planar mirrors, particularly their restricted applicability and environmental sensitivity, this study presents a novel hybrid analytical methodology integrating sensitivity matrix decomposition with rigorous ray tracing simulations. The proposed framework establishes a comprehensive solution for high-precision surface figure characterization through systematic error decoupling and numerical optimization. The investigation commences with the development of a Zemax-based Ritchey-Common optical model, from which a sensitivity matrix is rigorously derived through advanced ray tracing algorithms. This matrix enables precise separation of systematic errors inherent in the measurement process, demonstrating superior accuracy compared to conventional Zernike polynomial aberration correction methods while eliminating approximation-induced artifacts in data interpretation. Subsequent numerical verification of the sensitivity matrix algorithm confirms its theoretical validity and computational robustness. Experimental validation encompasses dual-scale implementation: Primary verification employs a 200-mm aperture test mirror, where cross-comparative analysis with direct interferometric measurements achieves sub-wavelength consistency (RMS < λ/40). Full-scale application in the manufacturing process of a 2.2-meter class planar mirror demonstrates exceptional surface figure control, attaining final surface accuracy better than λ/50 RMS. The methodology exhibits significant improvements in measurement repeatability and environmental stability. This research establishes a generalized computational framework that effectively addresses the scalability challenges in ultra-precision optical testing, providing both theoretical advancement and practical engineering solutions for next-generation large-aperture optical systems fabrication.
-
表 1 验证实验数据及处理结果(λ)
Table 1. Validation of experimental data and processing results
θ1 = 41° θ2 = 45° calculation results residual error (1) PV= 0.2036 RMS=0.0229 PV= 0.3406 RMS=0.0259 PV= 0.4060 RMS=0.0159 PV= 0.0986 RMS=0.0067 (2) PV= 0.1878 RMS=0.0205 PV= 0.3429 RMS=0.0265 PV= 0.4700 RMS=0.0158 PV= 0.0979 RMS=0.0066 (3) PV= 0.2037 RMS=0.0201 PV= 0.3220 RMS=0.0257 PV= 0.4460 RMS=0.0160 PV= 0.0986 RMS=0.0067 表 2 平面镜面形检测结果
Table 2. Plane mirror surface shape detection results
Ritchey angle results1 results 2 results 3 41.7° PV= 0.2374 RMS=0.0174 PV= 0.3379 RMS=0.0175 PV= 0.3337 RMS=0.0177 48.4° PV= 0.2406 RMS=0.0168 PV= 0.1929 RMS=0.0173 PV= 0.2055 RMS=0.0172 -
[1] 郭良. 基于相位差算法的高精度空间望远镜波前探测研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2023.GUO L. Research on high-accuracy wavefront sensing of space telescopebased on phase diversity algorithm[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2023. (in Chinese). [2] 刘宗豪, 牛冬生, 叶宇. 可用于空间望远镜主动支撑主镜的主动减振技术研究[J]. 激光与光电子学进展,2024,61(21):2122003.LIU Z H, NIU D SH, YE Y. Research on active vibration reduction technology for actively supporting main mirror of space telescope[J]. Laser & Optoelectronics Progress, 2024, 61(21): 2122003. (in Chinese). [3] 刘银年, 薛永祺. 星载高光谱成像载荷发展及关键技术[J]. 测绘学报,2023,52(7):1045-1058. doi: 10.11947/j.AGCS.2023.20220498LIU Y N, XUE Y Q. Development and key technologies of spaceborne hyperspectral imaging payload[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1045-1058. (in Chinese). doi: 10.11947/j.AGCS.2023.20220498 [4] 曾昶宇, 李金鹏, 王鑫蕊. 基于激光跟踪仪的瑞奇角在位检测方法[J]. 光学学报,2024,44(12):1212002. doi: 10.3788/AOS231348ZENG CH Y, LI J P, WANG X R. Method of in-situ detection of Ritchey angle based on laser tracker[J]. Acta Optica Sinica, 2024, 44(12): 1212002. (in Chinese). doi: 10.3788/AOS231348 [5] 石照耀, 费业泰. 轮廓扫描测量及其控制策略[J]. 合肥工业大学学报(自然科学版),1992,22(6):6-9.SHI ZH Y, FEI Y T. Profile scanning measurement and its control strategies[J]. Journal of Hefei University of Technology, 1992, 22(6): 6-9. (in Chinese). [6] 张隽楠, 范勇, 陈念年, 等. 大口径光学组件面形检测系统关键算法研究[J]. 计算机工程与应用,2011,47(20):163-166. doi: 10.3778/j.issn.1002-8331.2011.20.046ZHANG J N, FAN Y, CHEN N N, et al. Study on key algorithm in large optical components topography measurementsystem[J]. Computer Engineering and Application, 2011, 47(20): 163-166. (in Chinese). doi: 10.3778/j.issn.1002-8331.2011.20.046 [7] 林冬冬, 胡明勇, 李金鹏, 等. 大口径平面镜局部采样瑞奇-康芒检验[J]. 激光与光电子学进展,2018,55(3):031202.LIN D D, HU M Y, LI J P, et al. Local sampling Ritchey-common test for large aperture flat mirror[J]. Laser & Optoelectronics Progress, 2018, 55(3): 031202. (in Chinese). [8] 范勇, 陈念年, 张劲峰, 等. 大口径光学平面镜面形检测系统初步研究[J]. 计算机测量与控制,2010,18(4):785-788.FAN Y, CHEN N N, ZHANG J F, et al. Topography measurement system of large flat mirror[J]. Computer Measurement & Control, 2010, 18(4): 785-788. (in Chinese). [9] 王朝暄. 大口径光学平面干涉检测的子孔径拼接研究[D]. 南京: 南京理工大学, 2007.WANG ZH X. Research on sub-aperture stitching of large-aperture optical plane interferometry[D]. Nanjing: Nanjing University of Science and Technology, 2007. (in Chinese) (查阅网上资料, 未找到本条文献英文信息, 请确认). [10] THUNEN J G, KWON O Y. Full aperture testing with sub-aperture test optics[J]. Proceedings of SPIE, 1982, 0351: 19-27. [11] CHENG W M, CHEN M Y. Transformation and connection of subapertures in the multiaperture overlap-scanning technique for large optics tests[J]. Optical Engineering, 1993, 32(8): 1947-1950. doi: 10.1117/12.143720 [12] ZHANG L CH, XUAN B, XIE J J. Combination of skip-flat test with Ritchey-Common test for the large rectangular flat[J]. Proceeding of SPIE, 2010, 7656: 76564W. doi: 10.1117/12.867490 [13] 朱硕, 张晓辉. 瑞奇-康芒式大口径平面镜面形数据处理方法对比研究[J]. 应用光学,2015,36(5):698-703. doi: 10.5768/JAO201536.0501006ZHU SH, ZHANG X H. Comparative study on data processing method for large flat mirror in Ritchey-Common test[J]. Journal of Applied Optics, 2015, 36(5): 698-703. (in Chinese). doi: 10.5768/JAO201536.0501006 [14] 朱硕. 大口径光学平面镜面形检测技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2014.ZHU SH. Study on technology for large optic flat mirror testing[D]. Changchun: Graduate Institute of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics), 2014. (in Chinese). [15] 胡少杰, 王洪远, 何泽浩, 等. 近场分布式平面光源光强测试方法[J]. 光学学报,2024,44(3):0312004. doi: 10.3788/AOS231565HU SH J, WANG H Y, HE Z H, et al. Luminous Intensity of Plane Light Source Based on Near-Field Distributed Photometry[J]. Acta Optica Sinica, 2024, 44(3): 0312004. (in Chinese). doi: 10.3788/AOS231565 [16] 张宗. φ1.1m平面镜的瑞奇—康芒检验方法研究[D]. 南京: 南京理工大学, 2012.ZHANG Z. Research on the Ritchey-Common test method of φ1. 1m plane mirror[D]. Nanjing: Nanjing University of Science and Technology, 2012. (in Chinese) (查阅网上资料, 未找到本条文献英文信息, 请确认). [17] 刘一鸣, 李金鹏, 陈磊, 等. 采用单位激励影响矩阵数值计算的瑞奇-康芒检测技术[J]. 光学 精密工程,2018,26(4):771-777. doi: 10.3788/OPE.20182604.0771LIU Y M, LI J P, CHEN L, et al. Ritchey-Common interferometry using unit-excitation influence matrix's numerical calculation method[J]. Optics and Precision Engineering, 2018, 26(4): 771-777. (in Chinese). doi: 10.3788/OPE.20182604.0771 [18] 袁吕军, 邢娜. 大口径光学平面瑞奇-康芒检测技术的研究[J]. 光学技术,2007,33(5):737-740,744. doi: 10.3321/j.issn:1002-1582.2007.05.009YUAN L J, XING N. Study on the Ritchey-Common interferometry for large plano optics[J]. Optical Technique, 2007, 33(5): 737-740,744. (in Chinese). doi: 10.3321/j.issn:1002-1582.2007.05.009 [19] SHU K L. Ray-trace analysis and data reduction methods for the Ritchey-Common test[J]. Applied Optics, 1983, 22(12): 1879-1886. doi: 10.1364/AO.22.001879 [20] JI B, XU CH, LI B. The error analyze of testing the large aperture flat by the Ritchey-Common method[J]. Proceedings of SPIE, 2014, 9298: 92981A. [21] 刘昕, 王聪, 刘永强, 等. 大口径平面镜快速瑞奇-康芒测量法研究[J]. 应用光学,2022,43(4):707-713. doi: 10.5768/JAO202243.0403003LIU X, WANG C, LIU Y Q, et al. Rapid Ritchey-Common measurement method of large-aperture flat mirror[J]. Journal of Applied Optics, 2022, 43(4): 707-713. (in Chinese). doi: 10.5768/JAO202243.0403003 -