The improved simulated annealing algorithm for wavefront correction in free-space optical communication
-
摘要:
为了补偿大气湍流对相干自由空间光通信的影响,本文提出了一种基于改进模拟退火算法的自适应光学系统,旨在优化系统的混频效率和降低误码率,从而提升整体系统性能。首先,介绍了含有无波前自适应光学部分的相干光通信系统的组成,并重点分析了混频效率和误码率等关键参数。随后,详细阐述了改进模拟退火算法的工作原理及其在自适应光学系统中的应用。为了验证算法的有效性,进行了数值模拟分析,并与传统算法进行了对比分析。最后,在实验平台上收集实际数据以进一步评估算法性能。实验结果表明改进模拟退火算法相比于普通模拟退火算法,迭代次数减少50%的情况下,误码率降低到10-9,混频效率提高到0.9。改进模拟退火算法可以减少传统自适应光学系统的迭代次数,提高波前校正的精度,满足通信系统的需求。
Abstract:To compensate for atmospheric turbulence-induced wavefront distortion in coherent free-space optical communication, this paper proposes an adaptive optical system based on the improved simulated annealing algorithm. The proposed system seeks to optimize mixing efficiency and reduce the bit error rate, ultimately enhancing overall system performance. First, we describe the structure of a coherent optical communication system that lacks a wavefront adaptive optics component, focusing on key parameters such as mixing efficiency and bit error rate Next, the paper provides a detailed explanation of the working principles of the improved simulated annealing algorithm and its application in adaptive optical systems. To validate the proposed algorithm's effectiveness, numerical simulations are performed and compared against traditional algorithms. Finally, real-world data is collected from an experimental platform to further assess the algorithm's performance Experimental results demonstrate that, in comparison to the standard simulated annealing algorithm, the improved simulated annealing algorithm reduces the iteration count by 50%, decreases the bit error rate to 10−9, and increases the mixing efficiency to 0.9 Overall, the improved simulated annealing algorithm effectively reduces the iteration count in traditional adaptive optical systems, enhances wavefront correction accuracy, and satisfies communication system requirements.
-
Key words:
- wavefront correction /
- adaptive optics /
- wavefront sensor-less /
- mixing efficiency /
- bit error rate.
-
表 1 算法伪代码
Table 1. Algorithm pseudocode
算法: 改进模拟退火算法 输入:种群数量,最大迭代次数MaxIter,最大退火次数MaxCooling,初始温度$ {T}_{0} $,退火效率$ \lambda $ 输出:最优解 BestSolution 1: 初始化种群中的个体 2: for1 iter from 1 to MaxIter 3: for2 k from 1 to MaxCooling 4: 随机生成服从伯努利分布的扰动电压 5: 计算评价指标 6: 根据Metropolis准则决定是否接收新的解 7: 降低温度 8: end for2 9: 找到当前最优个体 pbest,围绕pbest进行折叠 10: 再加热 11: end for1 -
[1] 刘智, 蒋青芳, 刘树通, 等. 空间激光通信组网技术与应用研究进展[J]. 中国光学(中英文),2025,18(3):429-451. doi: 10.37188/CO.2023-0140LIU ZH, JIANG Q F, LIU SH T, et al. Research progress of space laser communication networking technology[J]. Chinese Optics, 2025, 18(3): 429-451. (in Chinese). doi: 10.37188/CO.2023-0140 [2] LARSSON R, SCHRÖDER J, KARLSSON M, et al. Coherent combining of low-power optical signals based on optically amplified error feedback[J]. Optics Express, 2022, 30(11): 19441-19455. doi: 10.1364/OE.456188 [3] 张天宇, 王钢, 张熙, 等. 基于焦面复制方法的自适应光学系统静态像差校正技术[J]. 中国光学,2022,15(3):545-551. doi: 10.37188/CO.2021-0182ZHANG T Y, WANG G, ZHANG X, et al. Staticaberration correction technique for adaptive optics system based on focal-plane copy approach[J]. Chinese Optics, 2022, 15(3): 545-551. (in Chinese). doi: 10.37188/CO.2021-0182 [4] PLATT B C, SHACK R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5): S573-S577. [5] ZHANG SH, WANG R, WANG Y K, et al. Extending the detection and correction abilities of an adaptive optics system for free-space optical communication[J]. Optics Communications, 2021, 482: 126571. doi: 10.1016/j.optcom.2020.126571 [6] YANG H ZH, LI X Y. Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor[J]. Optics & Laser Technology, 2011, 43(3): 630-635. [7] CHE D B, LI Y Y, WU Y H, et al. Theory of AdmSPGD algorithm in fiber laser coherent synthesis[J]. Optics Communications, 2021, 492: 126953. doi: 10.1016/j.optcom.2021.126953 [8] LIU W, MA X Y, JIN D R, et al. Residual network-based aberration correction in a sensor-less adaptive optics system[J]. Optics Communications, 2023, 545: 129707. doi: 10.1016/j.optcom.2023.129707 [9] KIRKPATRICK S, GELATT JR C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680. doi: 10.1126/science.220.4598.671 [10] MORALES-CASTAÑEDA B, ZALDÍVAR D, CUEVAS E, et al. An improved Simulated Annealing algorithm based on ancient metallurgy techniques[J]. Applied Soft Computing, 2019, 84: 105761. doi: 10.1016/j.asoc.2019.105761 [11] 戴正爽. 自适应光学技术在大气激光通信系统中的应用研究[D]. 长春: 长春理工大学, 2021.DAI ZH SH. Research of adaptive optics technique in atmospheric optical communications[D]. Changchun: Changchun University of Science and Technology, 2021. (in Chinese). [12] CAO J T, ZHAO X H, LIU W, et al. Performance analysis of a coherent free space optical communication system based on experiment[J]. Optics Express, 2017, 25(13): 15299-15312. doi: 10.1364/OE.25.015299 [13] LIU W, YAO K N, HUANG D N, et al. Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency[J]. Optics Express, 2016, 24(12): 13288-13302. doi: 10.1364/OE.24.013288 [14] METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953, 21(6): 1087-1092. doi: 10.1063/1.1699114 [15] LIU C, CHEN M, CHEN SH Q, et al. Adaptive optics for the free-space coherent optical communications[J]. Optics Communications, 2016, 361: 21-24. doi: 10.1016/j.optcom.2015.10.033 [16] ZERNIKE F. Inflection theory of the cutting method and its improved form, the phase contrast method[J]. Physica, 1934, 1: 689-704. doi: 10.1016/S0031-8914(34)80259-5 [17] NOLL R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3): 207-211. doi: 10.1364/JOSA.66.000207 [18] RODDIER N A. Atmospheric wavefront simulation using Zernike polynomials[J]. Optical Engineering, 1990, 29(10): 1174-1180. doi: 10.1117/12.55712 [19] YANG H ZH, LI X Y, GONG CH L, et al. Restoration of turbulence-degraded extended object using the stochastic parallel gradient descent algorithm: numerical simulation[J]. Optics Express, 2009, 17(5): 3052-3062. doi: 10.1364/OE.17.003052 [20] 张恒. 相干自由空间光通信无波前传感自适应光学关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.ZHANG H. Research on key technologies of sensor-less adaptive optics for coherent free-space optical communication[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics, and Physics, Chinese Academy of Sciences), 2022. (in Chinese). [21] LIU W, JIN D R, SHI W X, et al. Performance analysis of coherent optical communication based on hybrid algorithm[J]. Optics & Laser Technology, 2022, 149: 107878. [22] ZHANG H, XU L, GUO Y F, et al. Application of AdamSPGD algorithm to sensor-less adaptive optics in coherent free-space optical communication system[J]. Optics Express, 2022, 30(5): 7477-7490. doi: 10.1364/OE.451350 [23] CUI S Y, ZHAO X H, HE X, et al. A quick hybrid atmospheric-interference compensation method in a WFS-less free-space optical communication system[J]. Current Optics and Photonics, 2018, 2(6): 612-622. [24] ZHANG X Y, CAO ZH L, YANG CH L, et al. Improved bandwidth of open loop liquid crystal adaptive optics systems with a proportional-derivative controller[J]. Optics Express, 2019, 27(8): 11651-11660. doi: 10.1364/OE.27.011651 -