留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向自由空间光通信波前校正的改进模拟退火算法

李洪利 刘欣悦 杜博军 曹景太 张恒

李洪利, 刘欣悦, 杜博军, 曹景太, 张恒. 面向自由空间光通信波前校正的改进模拟退火算法[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0028
引用本文: 李洪利, 刘欣悦, 杜博军, 曹景太, 张恒. 面向自由空间光通信波前校正的改进模拟退火算法[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0028
LI Hong-li, LIU Xin-yue, DU Bo-jun, CAO Jing-tai, ZHANG Heng. The improved simulated annealing algorithm for wavefront correction in free-space optical communication[J]. Chinese Optics. doi: 10.37188/CO.2025-0028
Citation: LI Hong-li, LIU Xin-yue, DU Bo-jun, CAO Jing-tai, ZHANG Heng. The improved simulated annealing algorithm for wavefront correction in free-space optical communication[J]. Chinese Optics. doi: 10.37188/CO.2025-0028

面向自由空间光通信波前校正的改进模拟退火算法

cstr: 32171.14.CO.2025-0028
基金项目: 国家重点研发计划(No. 2023YFB3905703);吉林省科技发展计划项目(No. 20210101468JC);中国科学院海洋大科学研究中心重点部署项目(No. COMS2020J09)
详细信息
    作者简介:

    李洪利(1999—),男,山东聊城人,硕士研究生,2022年于山东师范大学获得学士学位,主要从事自由空间光通信方面的研究。E-mail:wjmb18@163.com

    张 恒(1990—),男,山东聊城人,2015年于哈尔滨工业大学大学获得硕士学位,2022年于中国科学院大学获得博士学位,现为中国科学院长春光学精密机械于物理研究所副研究员,主要从事无波前传感自适应光学及光电探测技术方面的研究。E-mail:zhangheng@ciomp.ac.cn

  • 中图分类号: O436

The improved simulated annealing algorithm for wavefront correction in free-space optical communication

Funds: Supported by the National Key Research and Development Program of China (No. 2023YFB3905703); Science and Technology Development Plan Project of Jilin Province, China (No. 20210101468JC); the Key Deployment Project of Centre for Ocean Mega-Research of Science, Chinese Academy of Science (No. COMS2020J09)
More Information
  • 摘要:

    为了补偿大气湍流对相干自由空间光通信的影响,本文提出了一种基于改进模拟退火算法的自适应光学系统,旨在优化系统的混频效率和降低误码率,从而提升整体系统性能。首先,介绍了含有无波前自适应光学部分的相干光通信系统的组成,并重点分析了混频效率和误码率等关键参数。随后,详细阐述了改进模拟退火算法的工作原理及其在自适应光学系统中的应用。为了验证算法的有效性,进行了数值模拟分析,并与传统算法进行了对比分析。最后,在实验平台上收集实际数据以进一步评估算法性能。实验结果表明改进模拟退火算法相比于普通模拟退火算法,迭代次数减少50%的情况下,误码率降低到10-9,混频效率提高到0.9。改进模拟退火算法可以减少传统自适应光学系统的迭代次数,提高波前校正的精度,满足通信系统的需求。

     

  • 图 1  含有WLAO系统的CFSOC系统框图

    Figure 1.  Conventional CFSOC system with WLAO

    图 2  波前像差的初始Zernike系数

    Figure 2.  Initial Zernike coefficients of the wavefront

    图 3  强湍流下校正前后的波前相面

    Figure 3.  Phase plane of the wavefront before and after correction for strong turbulence

    图 5  不同算法的比较

    Figure 5.  Comparison of different algorithms

    图 6  强湍流下波前校正结果

    Figure 6.  Wavefront correction results for strong turbulence.

    图 7  弱湍流下波前校正结果

    Figure 7.  Wavefront correction results for weak turbulence.

    图 4  弱湍流下校正前后的波前相面

    Figure 4.  Phase plane of the wavefront before and after correction for weak turbulence

    图 8  系统误码率比较

    Figure 8.  Comparison of system BER

    图 9  实验平台照片

    Figure 9.  Picture of experimental platform

    图 10  实验平台系统框架示意图

    Figure 10.  Diagram of the experimental platform system framework

    图 11  校正前后的远场图像

    Figure 11.  Far-field images before and after correction

    图 12  校正前后的等效ME对比

    Figure 12.  Comparison of the equivalent ME before and after correction

    图 13  校正前后的BER对比

    Figure 13.  Comparison of the BER before and after correction

    表  1  算法伪代码

    Table  1.   Algorithm pseudocode

    算法: 改进模拟退火算法
    输入:种群数量,最大迭代次数MaxIter,最大退火次数MaxCooling,初始温度$ {T}_{0} $,退火效率$ \lambda $
    输出:最优解 BestSolution
    1:  初始化种群中的个体
    2:  for1 iter from 1 to MaxIter
    3:   for2 k from 1 to MaxCooling
    4:    随机生成服从伯努利分布的扰动电压
    5:    计算评价指标
    6:    根据Metropolis准则决定是否接收新的解
    7:    降低温度
    8:   end for2
    9:   找到当前最优个体 pbest,围绕pbest进行折叠
    10:   再加热
    11:  end for1
    下载: 导出CSV
  • [1] 刘智, 蒋青芳, 刘树通, 等. 空间激光通信组网技术与应用研究进展[J]. 中国光学(中英文),2025,18(3):429-451. doi: 10.37188/CO.2023-0140

    LIU ZH, JIANG Q F, LIU SH T, et al. Research progress of space laser communication networking technology[J]. Chinese Optics, 2025, 18(3): 429-451. (in Chinese). doi: 10.37188/CO.2023-0140
    [2] LARSSON R, SCHRÖDER J, KARLSSON M, et al. Coherent combining of low-power optical signals based on optically amplified error feedback[J]. Optics Express, 2022, 30(11): 19441-19455. doi: 10.1364/OE.456188
    [3] 张天宇, 王钢, 张熙, 等. 基于焦面复制方法的自适应光学系统静态像差校正技术[J]. 中国光学,2022,15(3):545-551. doi: 10.37188/CO.2021-0182

    ZHANG T Y, WANG G, ZHANG X, et al. Staticaberration correction technique for adaptive optics system based on focal-plane copy approach[J]. Chinese Optics, 2022, 15(3): 545-551. (in Chinese). doi: 10.37188/CO.2021-0182
    [4] PLATT B C, SHACK R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5): S573-S577.
    [5] ZHANG SH, WANG R, WANG Y K, et al. Extending the detection and correction abilities of an adaptive optics system for free-space optical communication[J]. Optics Communications, 2021, 482: 126571. doi: 10.1016/j.optcom.2020.126571
    [6] YANG H ZH, LI X Y. Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor[J]. Optics & Laser Technology, 2011, 43(3): 630-635.
    [7] CHE D B, LI Y Y, WU Y H, et al. Theory of AdmSPGD algorithm in fiber laser coherent synthesis[J]. Optics Communications, 2021, 492: 126953. doi: 10.1016/j.optcom.2021.126953
    [8] LIU W, MA X Y, JIN D R, et al. Residual network-based aberration correction in a sensor-less adaptive optics system[J]. Optics Communications, 2023, 545: 129707. doi: 10.1016/j.optcom.2023.129707
    [9] KIRKPATRICK S, GELATT JR C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680. doi: 10.1126/science.220.4598.671
    [10] MORALES-CASTAÑEDA B, ZALDÍVAR D, CUEVAS E, et al. An improved Simulated Annealing algorithm based on ancient metallurgy techniques[J]. Applied Soft Computing, 2019, 84: 105761. doi: 10.1016/j.asoc.2019.105761
    [11] 戴正爽. 自适应光学技术在大气激光通信系统中的应用研究[D]. 长春: 长春理工大学, 2021.

    DAI ZH SH. Research of adaptive optics technique in atmospheric optical communications[D]. Changchun: Changchun University of Science and Technology, 2021. (in Chinese).
    [12] CAO J T, ZHAO X H, LIU W, et al. Performance analysis of a coherent free space optical communication system based on experiment[J]. Optics Express, 2017, 25(13): 15299-15312. doi: 10.1364/OE.25.015299
    [13] LIU W, YAO K N, HUANG D N, et al. Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency[J]. Optics Express, 2016, 24(12): 13288-13302. doi: 10.1364/OE.24.013288
    [14] METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953, 21(6): 1087-1092. doi: 10.1063/1.1699114
    [15] LIU C, CHEN M, CHEN SH Q, et al. Adaptive optics for the free-space coherent optical communications[J]. Optics Communications, 2016, 361: 21-24. doi: 10.1016/j.optcom.2015.10.033
    [16] ZERNIKE F. Inflection theory of the cutting method and its improved form, the phase contrast method[J]. Physica, 1934, 1: 689-704. doi: 10.1016/S0031-8914(34)80259-5
    [17] NOLL R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3): 207-211. doi: 10.1364/JOSA.66.000207
    [18] RODDIER N A. Atmospheric wavefront simulation using Zernike polynomials[J]. Optical Engineering, 1990, 29(10): 1174-1180. doi: 10.1117/12.55712
    [19] YANG H ZH, LI X Y, GONG CH L, et al. Restoration of turbulence-degraded extended object using the stochastic parallel gradient descent algorithm: numerical simulation[J]. Optics Express, 2009, 17(5): 3052-3062. doi: 10.1364/OE.17.003052
    [20] 张恒. 相干自由空间光通信无波前传感自适应光学关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.

    ZHANG H. Research on key technologies of sensor-less adaptive optics for coherent free-space optical communication[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics, and Physics, Chinese Academy of Sciences), 2022. (in Chinese).
    [21] LIU W, JIN D R, SHI W X, et al. Performance analysis of coherent optical communication based on hybrid algorithm[J]. Optics & Laser Technology, 2022, 149: 107878.
    [22] ZHANG H, XU L, GUO Y F, et al. Application of AdamSPGD algorithm to sensor-less adaptive optics in coherent free-space optical communication system[J]. Optics Express, 2022, 30(5): 7477-7490. doi: 10.1364/OE.451350
    [23] CUI S Y, ZHAO X H, HE X, et al. A quick hybrid atmospheric-interference compensation method in a WFS-less free-space optical communication system[J]. Current Optics and Photonics, 2018, 2(6): 612-622.
    [24] ZHANG X Y, CAO ZH L, YANG CH L, et al. Improved bandwidth of open loop liquid crystal adaptive optics systems with a proportional-derivative controller[J]. Optics Express, 2019, 27(8): 11651-11660. doi: 10.1364/OE.27.011651
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  75
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-26
  • 录用日期:  2025-04-02
  • 网络出版日期:  2025-04-19

目录

    /

    返回文章
    返回