Simultaneous measurement of radial angular displacement and longitudinal linear displacement with cascade metasurfaces
-
摘要:
为了解决现有超构表面位移测量技术无法同时测量多个物理量的问题,本文设计了一种超构表面级联结构,可用于同时测量径向角位移和纵向线位移。首先,根据级联超构表面对圆偏振光的联合相位调制阐述了位移测量的工作原理。接着,以琼斯传输矩阵分析了相位延迟携带的位移信息,推导了角位移与线位移的数学表征。然后,以设计目标作为约束条件优化单元结构参数,构建超构表面的模型。最后,采用时域有限差分法对超构表面结构进行模拟,验证方法可行性并分析器件测量性能。结果表明,在633 nm的工作波长下,角位移灵敏度为
0.9716 ,理论分辨率34.27 μrad,线位移灵敏度为0.0041 ,理论分辨率8.12 nm。该方法提高了超构表面位移测量技术的测量自由度,并有希望进一步扩展到六维,以此实现对待测目标的完全姿态确定。Abstract:To solve the problem of existing metasurface displacement measurement techniques unable to measure multiple physical quantities simultaneously, this paper proposes a metasurface cascade structure that can measure radial angular displacement and longitudinal line displacement simultaneously. First, the working principle of displacement measurement is described according to the joint phase modulation of circular polarized light by a cascade metasurface. Second, the displacement information carried by the phase delay is analyzed using the Jones transport matrix, and the angular and linear displacements are mathematically characterized. Then, the design objective is used as a constraint to optimize unit structure parameters and create metasurface models. Finally, the finite-difference time-domain method is used to simulate the metasurface structures, validate the method's feasibility, and evaluate the device's measurement performance. The results show that the angular displacement sensitivity was
0.9716 with a theoretical resolution of 34.27 μrad, and the linear displacement sensitivity was0.0041 with a theoretical resolution of 8.12 nm at the working wavelength of 633 nm. The measurement freedom of metasurface displacement measurement technology is improved by this method. It is hoped that it can be further expanded to six dimensions so that the measured target's entire attitude can be determined. -
-
[1] KRIEG M, FLÄSCHNER G, ALSTEENS D, et al. Atomic force microscopy-based mechanobiology[J]. Nature Reviews Physics, 2019, 1(1): 41-57. [2] KNOBEL R G, CLELAND A N. Nanometre-scale displacement sensing using a single electron transistor[J]. Nature, 2003, 424(6946): 291-293. doi: 10.1038/nature01773 [3] ORJI N G, BADAROGLU M, BARNES B M, et al. Metrology for the next generation of semiconductor devices[J]. Nature Electronics, 2018, 1(10): 532-547. doi: 10.1038/s41928-018-0150-9 [4] ADE P A R, AGHANIM N, ANSARI R, et al. Planck early results. VI. The high frequency instrument data processing[J]. Astronomy & Astrophysics, 2011, 536: A6. [5] DO K D. Robust adaptive tracking control of underactuated ODINs under stochastic sea loads[J]. Robotics and Autonomous Systems, 2015, 72: 152-163. doi: 10.1016/j.robot.2015.05.007 [6] EL MELEGY A, YOUNES M A. Positioning errors and accuracy of CNC machine tools[J]. Engineering Research Express, 2024, 6(4): 045415. doi: 10.1088/2631-8695/ad8ac1 [7] ZHOU S Y, JIANG R L, ZHANG R X, et al. Absolute angular position measurement by dual-comb spectroscopy of an autocollimation diffracted beam[J]. Optics Letters, 2023, 48(5): 1104-1107. doi: 10.1364/OL.479328 [8] SONG N F, XU X B, ZHANG Z CH, et al. Advanced interferometric fiber optic gyroscope for inertial sensing: a review[J]. Journal of Lightwave Technology, 2023, 41(13): 4023-4034. doi: 10.1109/JLT.2023.3260839 [9] YE G Y, YUAN T, ZHANG Y L, et al. Recent progress on laser interferometry based on vortex beams: status, challenges, and perspectives[J]. Optics and Lasers in Engineering, 2024, 172: 107871. doi: 10.1016/j.optlaseng.2023.107871 [10] 吕强, 王玮, 刘兆武, 等. 五维自由度衍射光栅精密测量系统(英文)[J]. 中国光学,2020,13(1):189-202. doi: 10.3788/co.20201301.0189LV Q, WANG W, LIU ZH W, et al. Grating-based precision measurement system for five-dimensional measurement[J]. Chinese Optics, 2020, 13(1): 189-202. doi: 10.3788/co.20201301.0189 [11] CHEN Y L, SHIMIZU Y, TAMADA J, et al. Laser autocollimation based on an optical frequency comb for absolute angular position measurement[J]. Precision Engineering, 2018, 54: 284-293. doi: 10.1016/j.precisioneng.2018.06.005 [12] ZHOU S Y, LE V, XIONG SH L, et al. Dual-comb spectroscopy resolved three-degree-of-freedom sensing[J]. Photonics Research, 2021, 9(2): 243-251. doi: 10.1364/PRJ.412898 [13] ZHANG W, LI W H, ZHANG T, et al. A large-size and polarization-independent two dimensional grating fabricated by scanned reactive-ion-beam etching[J]. Nanophotonics, 2022, 11(21): 4649-4657. doi: 10.1515/nanoph-2022-0371 [14] ZHOU W Y, LIU ZH W, SUN Y J, et al. Bidirectional Littrow double grating interferometry for quadruple optical interpolation[J]. Optics & Laser Technology, 2024, 175: 110751. [15] ZHENG G X, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2 [16] DENG L G, DENG J, GUAN ZH Q, et al. Malus-metasurface-assisted polarization multiplexing[J]. Light: Science & Applications, 2020, 9: 101. [17] 周俊焯, 郝佳, 余晓畅, 等. 面向偏振成像的超构表面研究进展[J]. 中国光学(中英文),2023,16(5):973-995. doi: 10.37188/CO.2022-0234ZHOU J ZH, HAO J, YU X CH, et al. Recent advances in metasurfaces for polarization imaging[J]. Chinese Optics, 2023, 16(5): 973-995. (in Chinese). doi: 10.37188/CO.2022-0234 [18] ZHENG P X, DAI Q, LI Z L, et al. Metasurface-based key for computational imaging encryption[J]. Science Advances, 2021, 7(21): eabg0363. doi: 10.1126/sciadv.abg0363 [19] 张志东, 张慧男, 梁洁, 等. 基于Au纳米平行双棒超表面阵列的双Fano共振和折射率传感器特性研究(英文)[J]. 中国光学(中英文),2023,16(4):961-971. doi: 10.37188/CO.EN-2023-0008ZHANG ZH D, ZHANG H N, LIANG J, et al. Double Fano resonance and refractive index sensors based on parallel-arranged Au nanorod dimer metasurface arrays[J]. Chinese Optics, 2023, 16(4): 961-971. doi: 10.37188/CO.EN-2023-0008 [20] YUE F Y, AGLIERI V, PICCOLI R, et al. Highly sensitive polarization rotation measurement through a high-order vector beam generated by a metasurface[J]. Advanced Materials Technologies, 2020, 5(5): 1901008. doi: 10.1002/admt.201901008 [21] GU W H, ZHANG X F, LIU J CH, et al. Optical angle barcodes enabled by a pixelated metasurface for absolute micro-angle measurement[J]. Laser & Photonics Reviews, 2024, 18(2): 2300831. [22] ZANG H F, XI ZH, ZHANG ZH Y, et al. Ultrasensitive and long-range transverse displacement metrology with polarization-encoded metasurface[J]. Science Advances, 2022, 8(41): eadd1973. doi: 10.1126/sciadv.add1973 [23] CAO D L, LI D, HU J Y, et al. Off-axis bifocal metalens for displacement measurement[J]. Nanotechnology, 2024, 35(21): 215203. doi: 10.1088/1361-6528/ad26d7 [24] PALIK E D. Handbook of Optical Constants of Solids[M]. Orlando: Academic Press, 1997. [25] 洪鹏, 胡珑夏雨, 周子昕, 等. 光子学逆向设计研究进展(特邀)[J]. 光子学报,2023,52(6):0623001. doi: 10.3788/gzxb20235206.0623001HONG P, HU L X Y, ZHOU Z X, et al. Advances of inverse design in photonics (invited)[J]. Acta Photonica Sinica, 2023, 52(6): 0623001. (in Chinese). doi: 10.3788/gzxb20235206.0623001 [26] 李涵梦. 光学超构透镜的制备与性能研究[D]. 南京: 南京大学, 2021.LI H M. Fabrication and performance of optical metalenses[D]. Nanjing: Nanjing University, 2021. (in Chinese). -