留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用级联超构表面同时测量径向角位移和纵向线位移

张振宇 张伟 刘睿 张婧英 李文昊

张振宇, 张伟, 刘睿, 张婧英, 李文昊. 利用级联超构表面同时测量径向角位移和纵向线位移[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0033
引用本文: 张振宇, 张伟, 刘睿, 张婧英, 李文昊. 利用级联超构表面同时测量径向角位移和纵向线位移[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0033
ZHANG Zhen-yu, ZHANG Wei, LIU Rui, ZHANG Jing-ying, LI Wen-hao. Simultaneous measurement of radial angular displacement and longitudinal linear displacement with cascade metasurfaces[J]. Chinese Optics. doi: 10.37188/CO.2025-0033
Citation: ZHANG Zhen-yu, ZHANG Wei, LIU Rui, ZHANG Jing-ying, LI Wen-hao. Simultaneous measurement of radial angular displacement and longitudinal linear displacement with cascade metasurfaces[J]. Chinese Optics. doi: 10.37188/CO.2025-0033

利用级联超构表面同时测量径向角位移和纵向线位移

cstr: 32171.14.CO.2025-0033
基金项目: 中国科学院稳定支持基础研究领域青年团队项目(No. YSBR-103);中国科学院青年创新促进会(No. 2021220);吉林省与中国科学院科技合作高技术产业化专项(No. 2024SYHZ0018);吉林省科技发展计划科技条件与平台建设计划(No. 20220505001ZP)
详细信息
    作者简介:

    张振宇(2000—),男,山东济宁人,硕士研究生,2022年于山东科技大学获得学士学位,主要从事微纳器件设计方面的研究。E-mail:phy_zhang@foxmail.com

    李文昊(1980—),男,内蒙古赤峰人,博士,研究员,2008年于中国科学院长春光学精密机械与物理研究所获博士学位,主要研究方向为平面、凹面全息光栅的理论设计及光栅精密位移测量技术。E-mail:liwh@ciomp.ac.cn

  • 中图分类号: TP394.1;TH691.9

Simultaneous measurement of radial angular displacement and longitudinal linear displacement with cascade metasurfaces

Funds: Supported by CAS Project for Young Scientists in Basic Research (No. YSBR-103); Chinese Academy of Sciences Youth Innovation Promotion Association (No. 2021220); Jilin Province and CAS science and technology cooperation in high-tech industrialization of special projects (No. 2024SYHZ0018); Jilin Provincial Science and Technology Development Program of Science and Technology Conditions and Platform Construction Program (No. 20220505001ZP)
More Information
  • 摘要:

    为了解决现有超构表面位移测量技术无法同时测量多个物理量的问题,本文设计了一种超构表面级联结构,可用于同时测量径向角位移和纵向线位移。首先,根据级联超构表面对圆偏振光的联合相位调制阐述了位移测量的工作原理。接着,以琼斯传输矩阵分析了相位延迟携带的位移信息,推导了角位移与线位移的数学表征。然后,以设计目标作为约束条件优化单元结构参数,构建超构表面的模型。最后,采用时域有限差分法对超构表面结构进行模拟,验证方法可行性并分析器件测量性能。结果表明,在633 nm的工作波长下,角位移灵敏度为0.9716,理论分辨率34.27 μrad,线位移灵敏度为0.0041,理论分辨率8.12 nm。该方法提高了超构表面位移测量技术的测量自由度,并有希望进一步扩展到六维,以此实现对待测目标的完全姿态确定。

     

  • 图 1  超构表面位移传感装置的示意图

    Figure 1.  Schematic diagram of the metasurface displacement sensing device

    图 2  位移测量超构表面的工作原理图

    Figure 2.  Working principle diagram of the metasurface for displacement measurement

    图 3  两种超构表面的设计

    Figure 3.  Design of two types of metasurfaces

    图 4  超构表面的设计与优化

    Figure 4.  Design and optimization of metasurfaces

    图 5  编码超构表面的仿真结果

    Figure 5.  Simulation results of encoding metasurface

    图 6  圆偏振分束超构表面的仿真结果

    Figure 6.  Simulation results of circular polarization beam splitter metasurface

    图 7  超构表面的位移测量特性

    Figure 7.  Displacement measurement characterization of metasurfaces

    图 8  编码超构表面的制造容差

    Figure 8.  Fabrication tolerances of encoding metasurface

    图 9  超构表面的对准精度

    Figure 9.  Alignment accuracy of the metasurfaces

  • [1] KRIEG M, FLÄSCHNER G, ALSTEENS D, et al. Atomic force microscopy-based mechanobiology[J]. Nature Reviews Physics, 2019, 1(1): 41-57.
    [2] KNOBEL R G, CLELAND A N. Nanometre-scale displacement sensing using a single electron transistor[J]. Nature, 2003, 424(6946): 291-293. doi: 10.1038/nature01773
    [3] ORJI N G, BADAROGLU M, BARNES B M, et al. Metrology for the next generation of semiconductor devices[J]. Nature Electronics, 2018, 1(10): 532-547. doi: 10.1038/s41928-018-0150-9
    [4] ADE P A R, AGHANIM N, ANSARI R, et al. Planck early results. VI. The high frequency instrument data processing[J]. Astronomy & Astrophysics, 2011, 536: A6.
    [5] DO K D. Robust adaptive tracking control of underactuated ODINs under stochastic sea loads[J]. Robotics and Autonomous Systems, 2015, 72: 152-163. doi: 10.1016/j.robot.2015.05.007
    [6] EL MELEGY A, YOUNES M A. Positioning errors and accuracy of CNC machine tools[J]. Engineering Research Express, 2024, 6(4): 045415. doi: 10.1088/2631-8695/ad8ac1
    [7] ZHOU S Y, JIANG R L, ZHANG R X, et al. Absolute angular position measurement by dual-comb spectroscopy of an autocollimation diffracted beam[J]. Optics Letters, 2023, 48(5): 1104-1107. doi: 10.1364/OL.479328
    [8] SONG N F, XU X B, ZHANG Z CH, et al. Advanced interferometric fiber optic gyroscope for inertial sensing: a review[J]. Journal of Lightwave Technology, 2023, 41(13): 4023-4034. doi: 10.1109/JLT.2023.3260839
    [9] YE G Y, YUAN T, ZHANG Y L, et al. Recent progress on laser interferometry based on vortex beams: status, challenges, and perspectives[J]. Optics and Lasers in Engineering, 2024, 172: 107871. doi: 10.1016/j.optlaseng.2023.107871
    [10] 吕强, 王玮, 刘兆武, 等. 五维自由度衍射光栅精密测量系统(英文)[J]. 中国光学,2020,13(1):189-202. doi: 10.3788/co.20201301.0189

    LV Q, WANG W, LIU ZH W, et al. Grating-based precision measurement system for five-dimensional measurement[J]. Chinese Optics, 2020, 13(1): 189-202. doi: 10.3788/co.20201301.0189
    [11] CHEN Y L, SHIMIZU Y, TAMADA J, et al. Laser autocollimation based on an optical frequency comb for absolute angular position measurement[J]. Precision Engineering, 2018, 54: 284-293. doi: 10.1016/j.precisioneng.2018.06.005
    [12] ZHOU S Y, LE V, XIONG SH L, et al. Dual-comb spectroscopy resolved three-degree-of-freedom sensing[J]. Photonics Research, 2021, 9(2): 243-251. doi: 10.1364/PRJ.412898
    [13] ZHANG W, LI W H, ZHANG T, et al. A large-size and polarization-independent two dimensional grating fabricated by scanned reactive-ion-beam etching[J]. Nanophotonics, 2022, 11(21): 4649-4657. doi: 10.1515/nanoph-2022-0371
    [14] ZHOU W Y, LIU ZH W, SUN Y J, et al. Bidirectional Littrow double grating interferometry for quadruple optical interpolation[J]. Optics & Laser Technology, 2024, 175: 110751.
    [15] ZHENG G X, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2
    [16] DENG L G, DENG J, GUAN ZH Q, et al. Malus-metasurface-assisted polarization multiplexing[J]. Light: Science & Applications, 2020, 9: 101.
    [17] 周俊焯, 郝佳, 余晓畅, 等. 面向偏振成像的超构表面研究进展[J]. 中国光学(中英文),2023,16(5):973-995. doi: 10.37188/CO.2022-0234

    ZHOU J ZH, HAO J, YU X CH, et al. Recent advances in metasurfaces for polarization imaging[J]. Chinese Optics, 2023, 16(5): 973-995. (in Chinese). doi: 10.37188/CO.2022-0234
    [18] ZHENG P X, DAI Q, LI Z L, et al. Metasurface-based key for computational imaging encryption[J]. Science Advances, 2021, 7(21): eabg0363. doi: 10.1126/sciadv.abg0363
    [19] 张志东, 张慧男, 梁洁, 等. 基于Au纳米平行双棒超表面阵列的双Fano共振和折射率传感器特性研究(英文)[J]. 中国光学(中英文),2023,16(4):961-971. doi: 10.37188/CO.EN-2023-0008

    ZHANG ZH D, ZHANG H N, LIANG J, et al. Double Fano resonance and refractive index sensors based on parallel-arranged Au nanorod dimer metasurface arrays[J]. Chinese Optics, 2023, 16(4): 961-971. doi: 10.37188/CO.EN-2023-0008
    [20] YUE F Y, AGLIERI V, PICCOLI R, et al. Highly sensitive polarization rotation measurement through a high-order vector beam generated by a metasurface[J]. Advanced Materials Technologies, 2020, 5(5): 1901008. doi: 10.1002/admt.201901008
    [21] GU W H, ZHANG X F, LIU J CH, et al. Optical angle barcodes enabled by a pixelated metasurface for absolute micro-angle measurement[J]. Laser & Photonics Reviews, 2024, 18(2): 2300831.
    [22] ZANG H F, XI ZH, ZHANG ZH Y, et al. Ultrasensitive and long-range transverse displacement metrology with polarization-encoded metasurface[J]. Science Advances, 2022, 8(41): eadd1973. doi: 10.1126/sciadv.add1973
    [23] CAO D L, LI D, HU J Y, et al. Off-axis bifocal metalens for displacement measurement[J]. Nanotechnology, 2024, 35(21): 215203. doi: 10.1088/1361-6528/ad26d7
    [24] PALIK E D. Handbook of Optical Constants of Solids[M]. Orlando: Academic Press, 1997.
    [25] 洪鹏, 胡珑夏雨, 周子昕, 等. 光子学逆向设计研究进展(特邀)[J]. 光子学报,2023,52(6):0623001. doi: 10.3788/gzxb20235206.0623001

    HONG P, HU L X Y, ZHOU Z X, et al. Advances of inverse design in photonics (invited)[J]. Acta Photonica Sinica, 2023, 52(6): 0623001. (in Chinese). doi: 10.3788/gzxb20235206.0623001
    [26] 李涵梦. 光学超构透镜的制备与性能研究[D]. 南京: 南京大学, 2021.

    LI H M. Fabrication and performance of optical metalenses[D]. Nanjing: Nanjing University, 2021. (in Chinese).
  • 加载中
图(9)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  23
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-03
  • 录用日期:  2025-04-14
  • 网络出版日期:  2025-05-21

目录

    /

    返回文章
    返回