留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双向条纹点云匹配的复杂纹理误差校正

张正祺 陈玉翀 达飞鹏 盖绍彦

张正祺, 陈玉翀, 达飞鹏, 盖绍彦. 基于双向条纹点云匹配的复杂纹理误差校正[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0040
引用本文: 张正祺, 陈玉翀, 达飞鹏, 盖绍彦. 基于双向条纹点云匹配的复杂纹理误差校正[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0040
ZHANG Zheng-qi, CHEN Yu-chong, DA Fei-peng, GAI Shao-yan. Error correction of complex texture objects based on bidirectional fringe projection point cloud fitting[J]. Chinese Optics. doi: 10.37188/CO.2025-0040
Citation: ZHANG Zheng-qi, CHEN Yu-chong, DA Fei-peng, GAI Shao-yan. Error correction of complex texture objects based on bidirectional fringe projection point cloud fitting[J]. Chinese Optics. doi: 10.37188/CO.2025-0040

基于双向条纹点云匹配的复杂纹理误差校正

cstr: 32171.14.CO.2025-0040
基金项目: 江苏省重大科技专项No. BG2024003);江苏省前沿引领技术基础研究专项(No. BK20192004C);江苏省高校优势学科建设工程资助课题
详细信息
    作者简介:

    张正祺(2000—),男,江苏南京人,硕士,现于东南大学攻读硕士学位,主要研究方向为三维测量。E-mail:220221929@seu.edu.cn

    陈玉翀(1997—),男,安徽滁州人,博士,现于东南大学攻读博士学位,主要研究方向为计算机视觉中的三维测量和深度学习。E-mail:230228469@seu.edu.cn

    达飞鹏(1968—),男,江苏徐州人,博士,教授,博士生导师,1998年于东南大学获得博士学位,主要研究方向为三维测量、三维识别和三维优化控制理论与技术。E-mail:dafp@seu.edu.cn

    盖绍彦(1979—),男,山东青岛人,博士,副教授,博士生导师,1997年至2008年在东南大学自动控制系先后获得学士、硕士和博士学位,主要研究方向为三维测量和三维人脸识别。E-mail:qxxymm@163.com

  • 中图分类号: TP394.1;TH691.9

Error correction of complex texture objects based on bidirectional fringe projection point cloud fitting

Funds: Supported by
More Information
  • 摘要:

    在结构光三维测量系统中,相机离焦现象不可避免。在离焦的影响下,物体表面的复杂纹理会引入显著的相位误差,影响测量精度。本文针对该问题,分析并构建了该相位误差的理论模型,指出了其与纹理变化方向的关系,并由此提出了一种基于双向条纹点云匹配的复杂纹理误差校正方法。理论上,通过投影横纵条纹图案获得的双向相位信息应解出完全一致的点云。基于这一原理,本文提出以最小化横纵点云对应点距离为目标,修正每个点对应的相位,最终得到校正后的点云。为了消除标定参数误差导致的点云整体偏移,本文通过点云匹配进行了预校正。对比实验的结果表明:对实际物体,相较传统方法,本文方法的平均绝对误差(MAE)和均方根误差(RMSE)最高可分别降低33.6%和39.1%。本文方法能够以更高的精度重建带有复杂纹理的物体。

     

  • 图 1  FPP测量系统

    Figure 1.  FPP measurement system

    图 2  复杂纹理误差分析。(a)被投影纹理的物体;(b)相机像素邻域

    Figure 2.  Complex texture error analysis. (a) Fringe-projected object; (b) camera pixel neighbor

    图 3  对同一平板的横纵点云重建结果

    Figure 3.  Horizontal and vertical point cloud reconstruction results for the same board

    图 4  点云匹配算法流程图

    Figure 4.  Flowchart of the point cloud fitting algorithm

    图 5  BPF方法流程图

    Figure 5.  Flowchart of BPF method

    图 6  模拟标定板重建误差。(a)模拟标定板;(b)横向条纹重建误差;(c)纵向条纹重建误差

    Figure 6.  Reconstruction errors of the simulated calibration board. (a) Simulated calibration board; (b) horizontal fringe reconstruction error; (c) vertical fringe reconstruction error

    图 8  标定板重建误差。(a) HFP;(b) TEM;(c) PC;(d) KE;(e) IFT;(f) BPF

    Figure 8.  Reconstruction errors of the calibration board. (a) HFP; (b) TEM; (c) PC; (d) KE; (e) IFT; (f) BPF

    图 7  相位误差拟合结果

    Figure 7.  Phase error fitting result

    图 9  物体模型重建误差。(a)物体及拟合区域;(b) HFP;(c) TEM;(d) PC;(e) IFT;(f) BPF

    Figure 9.  Reconstruction errors of the object model. (a) Object and the fitting area; (b) HFP; (c) TEM; (d) PC; (e) IFT; (f) BPF

    图 10  梯形块重建误差。(a)梯形块及拟合区域;(b) HFP;(c) TEM;(d) PC;(e) IFT;(f) BPF

    Figure 10.  Reconstruction errors of the trapezoidal block. (a) Block and the fitting area; (b) HFP; (c) TEM; (d) PC; (e) IFT; (f) BPF

    图 11  消融实验结果。(a)HFP测量误差;(b)BPF测量误差;(c)未修正点云偏移时BPF测量误差;(d)参数k搜索范围过大时BPF测量误差

    Figure 11.  Ablation experiment results. (a) HFP measurement error; (b) BPF measurement error; (c) BPF measurement error with point cloud offset uncorrected; (d) BPF measurement error with an excessively large range of k

    图 12  标准球重建误差。(a)标准球及拟合区域;(b)HFP;(c)TEM;(d)PC;(e)IFT;(f)BPF

    Figure 12.  Reconstruction errors of the standard sphere. (a) Standard sphere and the fitting area; (b) HFP; (c) TEM; (d) PC; (e) IFT; (f) BPF

    表  1  模拟标定板重建误差对比

    Table  1.   Comparison of reconstruction errors of the simulated calibration board

    MethodsHFPTEMPCKEIFTBPF
    MAE/mm0.10830.08590.08080.26230.10650.0612
    RMSE/mm0.14700.11760.11061.18350.14410.0868
    下载: 导出CSV

    表  2  模拟物体模型重建误差对比

    Table  2.   Comparison of reconstruction errors of the simulated object model

    MethodsHFPTEMPCIFTBPF
    MAE/mm0.07630.06250.06830.07380.0512
    RMSE/mm0.16790.13350.13820.16130.1147
    下载: 导出CSV

    表  3  梯形块重建误差对比

    Table  3.   Comparison of reconstruction errors of the trapezoidal block

    MethodsHFPTEMPCIFTBPF
    MAE/mm0.16310.14820.15400.16120.1377
    RMSE/mm0.36600.29700.35110.32380.2199
    下载: 导出CSV

    表  4  标准球重建误差对比

    Table  4.   Comparison of reconstruction errors of the standard sphere

    MethodsHFPTEMPCIFTBPF
    MAE/mm0.32710.28050.23820.32650.2173
    RMSE/mm0.54140.45310.41760.53780.3296
    Diameter/mm45.247.147.746.049.6
    下载: 导出CSV
  • [1] XU J, ZHANG S. Status, challenges, and future perspectives of fringe projection profilometry[J]. Optics and Lasers in Engineering, 2020, 135: 106193. doi: 10.1016/j.optlaseng.2020.106193
    [2] ZUO CH, FENG SH J, HUANG L, et al. Phase shifting algorithms for fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 2018, 109: 23-59. doi: 10.1016/j.optlaseng.2018.04.019
    [3] 余佳杰, 周建平, 薛瑞雷, 等. 基于结构光视觉和光照模型的焊缝表面质量检测[J]. 中国激光,2022,49(16):1602019. doi: 10.3788/CJL202249.1602019

    YU J J, ZHOU J P, XUE R X, et al. Weld Surface quality detection based on structured light and illumination model[J]. Chinese Journal of Lasers, 2022, 49(16): 1602019. (in Chinese). doi: 10.3788/CJL202249.1602019
    [4] 李勇, 张广汇, 马利红, 等. 条纹投影动态三维表面成像技术综述[J]. 红外与激光工程,2020,49(3):0303005. doi: 10.3788/IRLA202049.0303005

    LI Y, ZHANG G H, MA L H, et al. Review of dynamic three-dimensional surface imaging based on fringe projection[J]. Infrared and Laser Engineering, 2020, 49(3): 0303005. (in Chinese). doi: 10.3788/IRLA202049.0303005
    [5] LIU ZH CH, LIU X L, CAO ZH Q, et al. High precision calibration for three-dimensional vision-guided robot system[J]. IEEE Transactions on Industrial Electronics, 2023, 70(1): 624-634. doi: 10.1109/TIE.2022.3152026
    [6] WANG Q, KIM M K. Applications of 3D point cloud data in the construction industry: a fifteen-year review from 2004 to 2018[J]. Advanced Engineering Informatics, 2019, 39: 306-319. doi: 10.1016/j.aei.2019.02.007
    [7] 李茂月, 蔡东辰, 赵伟翔, 等. 航空叶片形貌高精度结构光扫描视点规划[J]. 中国光学(中英文),2023,16(4):802-815. doi: 10.37188/CO.2022-0221

    LI M Y, CAI D CH, ZHAO W X, et al. High precision structural light scanning viewpoint planning for aircraft blade morphology[J]. Chinese Optics, 2023, 16(4): 802-815. (in Chinese). doi: 10.37188/CO.2022-0221
    [8] 沈春梅, 刘凡, 朱佳乐. 基于结构光和CT的背部点云配准算法[J]. 激光与光电子学进展,2023,60(22):2210007.

    SHEN CH M, LIU F, ZHU J L. Back point cloud registration algorithm based on structured light and CT[J]. Laser & Optoelectronics Progress, 2023, 60(22): 2210007. (in Chinese).
    [9] 汪运, 郭建英, 梁浚哲, 等. 面向高反光表面的结构光面形测量方法[J]. 中国光学(中英文),2025,18(1):42-52. doi: 10.37188/CO.2024-0087

    WANG Y, GUO J Y, LIANG J ZH, et al. Structured light surface shape measurement method for highly reflective surfaces[J]. Chinese Optics, 2025, 18(1): 42-52. (in Chinese). doi: 10.37188/CO.2024-0087
    [10] 刘泽隆, 李茂月, 卢新元, 等. 高动态范围条纹结构光在机检测技术及应用进展[J]. 中国光学(中英文),2024,17(1):1-18. doi: 10.37188/CO.2023-0068

    LIU Z L, LI M Y, LU X Y, et al. On-machine detection technology and application progress of high dynamic range fringe structured light[J]. Chinese Optics, 2024, 17(1): 1-18. (in Chinese). doi: 10.37188/CO.2023-0068
    [11] 曹智睿. 基于相移条纹投影的动态3D测量误差补偿技术(英文)[J]. 中国光学(中英文),2023,16(1):184-192. doi: 10.37188/CO.EN.2022-0004

    CAO ZH R. Dynamic 3D measurement error compensation technology based on phase-shifting and fringe projection[J]. Chinese Optics, 2023, 16(1): 184-192. doi: 10.37188/CO.EN.2022-0004
    [12] BLANCHARD C, ZHANG S. Removal of phase artifacts from high-contrast texture for 3D fringe projection system[J]. Proceedings of SPIE, 2022, 12098: 1209805.
    [13] CHEN ZH D, LI X R, WANG H R, et al. Multi-dimensional information sensing of complex surfaces based on fringe projection profilometry[J]. Optics Express, 2023, 31(25): 41374-41390. doi: 10.1364/OE.509447
    [14] RAO L, DA F P. Local blur analysis and phase error correction method for fringe projection profilometry systems[J]. Applied Optics, 2018, 57(15): 4267-4276. doi: 10.1364/AO.57.004267
    [15] WU Y X, CAI X J, ZHU J J, et al. Analysis and reduction of the phase error caused by the non-impulse system psf in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2020, 127: 105987. doi: 10.1016/j.optlaseng.2019.105987
    [16] HU CH P, LIU SH T, WU D, et al. Phase error model and compensation method for reflectivity and distance discontinuities in fringe projection profilometry[J]. Optics Express, 2023, 31(3): 4405-4422. doi: 10.1364/OE.482158
    [17] YAO P CH, CHEN Y CH, GAI SH Y, et al. Accurate 3D measurement of complex texture objects by height compensation using a dual-projector structure[J]. IEEE Transactions on Image Processing, 2024, 33: 3021-3030. doi: 10.1109/TIP.2024.3389609
    [18] JUAREZ-SALAZAR R, RODRIGUEZ-REVELES G A, ESQUIVEL-HERNANDEZ S, et al. Three-dimensional spatial point computation in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2023, 164: 107482. doi: 10.1016/j.optlaseng.2023.107482
    [19] GUO B J, XU Y P, ZHANG CH L, et al. An optimized error compensation method for phase measurement profilometry[J]. Photonics, 2023, 10(9): 1036. doi: 10.3390/photonics10091036
    [20] EGGERT D W, LORUSSO A, FISHER R B. Estimating 3-D rigid body transformations: a comparison of four major algorithms[J]. Machine Vision and Applications, 1997, 9(5-6): 272-290. doi: 10.1007/s001380050048
    [21] WANG B, ZHAO ZH SH, CHEN Y, et al. A novel robust point cloud fitting algorithm based on nonlinear gauss-helmert model[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1002012.
    [22] WU Y, MA W P, GONG M G, et al. A novel point-matching algorithm based on fast sample consensus for image registration[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 43-47. doi: 10.1109/LGRS.2014.2325970
    [23] 季宇航, 宋爱国. 基于点线特征的通风管道建模与管内定位方法[J]. 仪器仪表学报,2024,45(2):272-279.

    JI Y H, SONG A G. Modeling and localization method for ventilation ducts based on point and line features[J]. Chinese Journal of Scientific Instrument, 2024, 45(2): 272-279. (in Chinese).
    [24] ZHANG ZH Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. doi: 10.1109/34.888718
    [25] XU L, JIA J Y. Two-phase kernel estimation for robust motion deblurring[C]. Proceedings of the 11th European Conference on Computer Vision, Springer, 2010: 157-170.
    [26] ZHUO SH J, SIM T. Defocus map estimation from a single image[J]. Pattern Recognition, 2011, 44(9): 1852-1858. doi: 10.1016/j.patcog.2011.03.009
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  16
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-07
  • 录用日期:  2025-04-27
  • 网络出版日期:  2025-05-21

目录

    /

    返回文章
    返回