-
摘要:
为实现肿瘤标志物的早期诊断,本文设计了一种适用于流动相样本的单分子免疫检测系统,并对其光学荧光成像平台及图像检测计数算法进行了研究。首先,为满足低浓度、高通量样本的即时检测需求,提出了一种基于流动相的单分子免疫检测方法。其次,结合微流控芯片的规格要求,设计了一套光学荧光成像检测平台,通过滤光和分光元件的合理配置,利用多模块集成实现荧光样本的高分辨率成像。最后,在离焦粒子的图像检测计数算法的基础上,优化了特征匹配方法,以高效处理非焦面荧光粒子信号。实验结果表明,本系统在单分子免疫标志物样本检测中的下限可达到0.001 pg/mL,在0.001~1 pg/mL的理论检测范围内,精度小于10% CVs,可在一小时内完成最多十份样本的检测。本系统满足了单分子免疫检测的稳定性、高灵敏度和高通量检测需求,在癌症早期筛查领域具有重要的应用前景。
Abstract:This study develops a single-molecule immunoassay system for flow-phase samples to enable early tumor biomarker detection. The system includes an optical fluorescence imaging platform and an image processing algorithm. First, we developed a flow-phase single-molecule immunoassay method suitable for real-time detection of low-concentration, high-throughput samples. Second, we designed a fluorescence imaging platform compatible with microfluidic chips, incorporating optical filters and beam splitters to achieve high-resolution fluorescence imaging. Third, we optimized a feature-matching algorithm to effectively detect out-of-focus fluorescent particles. Experimental results demonstrate a detection limit of 0.001 pg/mL within a linear range of 0.001−1 pg/mL, with coefficient of variation below 10%. The system can process up to 10 samples per hour. These findings indicate that our system meets the requirements for stable, sensitive, and high-throughput single-molecule detection, showing promising potential for early cancer screening.
-
表 1 a样本荧光粒子数量检测结果
Table 1. Detection results of fluorescent particles in sample a
稀释倍率 a1 a2 a3 平均值 1∶500 4.54 3.94 5.1 4.53 1∶ 1000 2.23 2.13 1.65 2 1∶ 3000 0.53 0.79 0.78 0.7 1∶ 4000 0.64 0.49 0.38 0.5 1∶ 5000 0.55 0.32 0.42 0.43 1∶ 10000 0.32 0.25 0.18 0.25 1∶ 50000 0.01 0.01 0 0.01 表 2 b样本荧光粒子数量检测结果
Table 2. Detection results of fluorescent particles in sample b
稀释倍率 b1 b2 b3 平均值 1∶500 4.41 4.14 3.93 4.16 1∶ 1000 2.09 1.37 1.56 1.67 1∶ 3000 0.98 0.77 0.64 0.79 1∶ 4000 0.46 0.43 0.4 0.43 1∶ 5000 0.57 0.56 0.26 0.46 1∶ 10000 0.24 0.31 0.17 0.24 1∶ 50000 0 0.01 0 0 表 3 本文系统与Simoa HD-X系统性能参数对比
Table 3. Performance comparison between the proposed system and Simoa HD-X system
性能参数 Simoa系统 本系统 取样量 1~100 μL 1~100 μL 反应量 0.048 μL 0.2~1 μL 检测限 0.01~100 pg/mL 0.001~1 pg/mL 动态范围 ≥4个数量级 ≥3个数量级 精确度 <10% CVs <10% CVs -
[1] 田丽丽, 杨新宇, 代小伟, 等. 免疫学检测联合痰涂片和痰培养检测在活动性肺结核临床诊断中的价值[J]. 中国防痨杂志,2021,43(10):1073-1078. doi: 10.3969/j.issn.1000-6621.2021.10.017TIAN L L, YANG X Y, DAI X W, et al. Diagnostic value of immunological test combined with sputum smear and sputum culture in clinical diagnosis of active pulmonary tuberculosis[J]. Chinese Journal of Antituberculosis, 2021, 43(10): 1073-1078. (in Chinese). doi: 10.3969/j.issn.1000-6621.2021.10.017 [2] 张雪洁, 汤家宝, 李廷栋, 等. 单分子免疫检测技术研究进展[J]. 中国生物工程杂志,2021,41(4):47-54.ZHANG X J, TANG J B, LI T D, et al. Advances in single molecule immunoassay[J]. China Biotechnology, 2021, 41(4): 47-54. (in Chinese). [3] RISSIN D M, KAN C W, CAMPBELL T G, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations[J]. Nature Biotechnology, 2010, 28(6): 595-599. doi: 10.1038/nbt.1641 [4] WANG X, OGATA A F, WALT D R. Ultrasensitive detection of enzymatic activity using single molecule arrays[J]. Journal of the American Chemical Society, 2020, 142(35): 15098-15106. doi: 10.1021/jacs.0c06599 [5] COHEN L, WALT D R. Single-molecule arrays for protein and nucleic acid analysis[J]. Annual Review of Analytical Chemistry, 2017, 10: 345-363. doi: 10.1146/annurev-anchem-061516-045340 [6] MACCHIA E, MANOLI K, HOLZER B, et al. Single-molecule detection with a millimetre-sized transistor[J]. Nature Communications, 2018, 9(1): 3223. doi: 10.1038/s41467-018-05235-z [7] HOLZMEISTER P, ACUNA G P, GROHMANN D, et al. Breaking the concentration limit of optical single-molecule detection[J]. Chemical Society Reviews, 2014, 43(4): 1014-1028. doi: 10.1039/C3CS60207A [8] RISSIN D M, KAN C W, CAMPBELL T G, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations[J]. Nature Biotechnology, 2010, 28(6): 595-599. (查阅网上资料, 本条文献与第3条文献重复, 请确认). [9] POLLOCK N R, BANZ A, CHEN X H, et al. Comparison of Clostridioides difficile stool toxin concentrations in adults with symptomatic infection and asymptomatic carriage using an ultrasensitive quantitative immunoassay[J]. Clinical Infectious Diseases, 2019, 68(1): 78-86. doi: 10.1093/cid/ciy415 [10] YELLESWARAPU V, BUSER J R, HABER M, et al. Mobile platform for rapid sub–Picogram-per-milliliter, multiplexed, digital droplet detection of proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(10): 4489-4495. [11] SU Y, ZHOU L. Review of single-molecule immunoassays: non-chip and on-chip assays[J]. Analytica Chimica Acta, 2024, 1322: 342885. doi: 10.1016/j.aca.2024.342885 [12] FARKA Z, MICKERT M J, PASTUCHA M, et al. Advances in optical single-molecule detection: en route to supersensitive bioaffinity assays[J]. Angewandte Chemie International Edition, 2020, 59(27): 10746-10773. doi: 10.1002/anie.201913924 [13] ROSSI M, BARNKOB R. A fast and robust algorithm for general defocusing particle tracking[J]. Measurement Science and Technology, 2020, 32(1): 014001. doi: 10.1088/1361-6501/abad71 [14] HAIN R, KÄHLER C J, RADESPIEL R. Principles of a volumetric velocity measurement technique based on optical aberrations[C]. Proceedings of the Conference on Imaging Measurement Methods for Flow Analysis, Springer, 2009: 1-10. [15] PEREIRA F, LU J, CASTAÑO-GRAFF E, et al. Microscale 3D flow mapping with μDDPIV[J]. Experiments in Fluids, 2007, 42(4): 589-599. doi: 10.1007/s00348-007-0267-5 [16] OLSEN M G, ADRIAN R J. Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry[J]. Experiments in Fluids, 2000, 29(S1): S166-S174. [17] POORBAUGH J, SAMANTA T, BRIGHT S W, et al. Measurement of IL-21 in human serum and plasma using ultrasensitive MSD S-PLEX® and Quanterix SiMoA methodologies[J]. Journal of Immunological Methods, 2019, 466: 9-16. doi: 10.1016/j.jim.2018.12.005 -