留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流动相单分子免疫检测系统的设计

胡鹏涛 高若谦 葛明锋 董文飞 李力 苏新然

胡鹏涛, 高若谦, 葛明锋, 董文飞, 李力, 苏新然. 流动相单分子免疫检测系统的设计[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0045
引用本文: 胡鹏涛, 高若谦, 葛明锋, 董文飞, 李力, 苏新然. 流动相单分子免疫检测系统的设计[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0045
HU Peng-tao, GAO Ruo-qian, GE Ming-feng, DONG Wen-fei, LI Li, SU Xin-ran. Design of flow-phase single-molecule immunoassay detection system[J]. Chinese Optics. doi: 10.37188/CO.2025-0045
Citation: HU Peng-tao, GAO Ruo-qian, GE Ming-feng, DONG Wen-fei, LI Li, SU Xin-ran. Design of flow-phase single-molecule immunoassay detection system[J]. Chinese Optics. doi: 10.37188/CO.2025-0045

流动相单分子免疫检测系统的设计

cstr: 32171.14.CO.2025-0045
基金项目: 国家重点研发计划(No. 2022YFC2403502);吉林省与中国科学院科技合作高新技术产业化专项资金项目(No. 2023SYHZ0037);山东省青年自然科学基金项目(No. ZR2023QF136)
详细信息
    作者简介:

    胡鹏涛(2001—),男,湖北天门人,硕士研究生,主要从事机械工程等方面研究。E-mail:hupt@mails.cust.edu.cn

    高若谦(1993-),男,吉林长春人,博士后,2020年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事高光谱、成像光学等方面研究。E-mail:gaorq@sibet.ac.cn

    葛明锋(1987-),男,江苏南通人,博士,研究员,硕士生导师,主要从事高光谱、荧光显微成像方面研究。E-mail:gemf@sibet.ac.cn

    董文飞(1975-),男,吉林长春人,博士,研究员,博士生导师,1999年于中国科学院长春应用化学研究所获得高分子物理化学专业硕士学位,2004年于德国马普胶体界面所和波兹坦大学获得自然科学博士学位,主要从事纳米材料和技术在生物医用光子学领域的应用基础研究。E-mail: wenfeidong@126.com

    李力(1986-),男,江苏昆山人,博士,研究员,博士生导师,主要从事荧光探针及检测试剂方面研究。E-mail: lil@sibet.ac.cn

    苏新然(1999-),男,吉林松原人,硕士研究生,主要从事机械工程等方面研究。E-mail: xinransu@mails.cust.edu.cn

  • 中图分类号: O439

Design of flow-phase single-molecule immunoassay detection system

Funds: Supported by the National Key R&D Program of China (No. 2022YFC2403502) Science and Technology Cooperation Special Project, Jilin Province and Chinese Academy of Sciences (No. 2023SYHZ0037); Shandong Provincial Natural Science Foundation, China (No. ZR2023QF136)
More Information
  • 摘要:

    为实现肿瘤标志物的早期诊断,本文设计了一种适用于流动相样本的单分子免疫检测系统,并对其光学荧光成像平台及图像检测计数算法进行了研究。首先,为满足低浓度、高通量样本的即时检测需求,提出了一种基于流动相的单分子免疫检测方法。其次,结合微流控芯片的规格要求,设计了一套光学荧光成像检测平台,通过滤光和分光元件的合理配置,利用多模块集成实现荧光样本的高分辨率成像。最后,在离焦粒子的图像检测计数算法的基础上,优化了特征匹配方法,以高效处理非焦面荧光粒子信号。实验结果表明,本系统在单分子免疫标志物样本检测中的下限可达到0.001 pg/mL,在0.001~1 pg/mL的理论检测范围内,精度小于10% CVs,可在一小时内完成最多十份样本的检测。本系统满足了单分子免疫检测的稳定性、高灵敏度和高通量检测需求,在癌症早期筛查领域具有重要的应用前景。

     

  • 图 1  单分子免疫检测系统的构成

    Figure 1.  Components of the single-molecule immunoassay system

    图 2  单分子免疫样本与微流控芯片示意图

    Figure 2.  Schematic of the single-molecule immunoassay integrated with a microfluidic chip

    图 3  光学荧光成像系统光路示意图

    Figure 3.  Optical path diagram of the fluorescence imaging system

    图 4  单分子免疫检测系统整机

    Figure 4.  Schematic of the integrated single-molecule immunoassay system

    图 5  粒子成像原理示意图

    Figure 5.  Schematic illustration of the particle imaging principle

    图 6  光学系统成像坐标系示意图

    Figure 6.  Schematic diagram of the optical imaging coordinate system

    图 7  互相关粒子检测算法检测流程

    Figure 7.  Flowchart of the cross-correlation particle detection algorithm

    图 8  单分子免疫成像检测流程图

    Figure 8.  Workflow of single-molecule immunoimaging detection

    图 9  系统采集单帧图像

    Figure 9.  Single-frame image acquisition by the system

    图 10  不同高度上荧光粒子的信噪比与互相关峰值

    Figure 10.  Signal-to-noise ratio and cross-correlation peak values of fluorescent particles at different heights

    图 11  系统训练的匹配预测模型

    Figure 11.  Matching prediction model trained by the system

    图 12  成像检测系统检测结果

    Figure 12.  Detection results of the imaging system

    图 13  数据拟合结果

    Figure 13.  Data fitting results

    表  1  a样本荧光粒子数量检测结果

    Table  1.   Detection results of fluorescent particles in sample a

    稀释倍率a1a2a3平均值
    1∶5004.543.945.14.53
    1∶10002.232.131.652
    1∶30000.530.790.780.7
    1∶40000.640.490.380.5
    1∶50000.550.320.420.43
    1∶100000.320.250.180.25
    1∶500000.010.0100.01
    下载: 导出CSV

    表  2  b样本荧光粒子数量检测结果

    Table  2.   Detection results of fluorescent particles in sample b

    稀释倍率b1b2b3平均值
    1∶5004.414.143.934.16
    1∶10002.091.371.561.67
    1∶30000.980.770.640.79
    1∶40000.460.430.40.43
    1∶50000.570.560.260.46
    1∶100000.240.310.170.24
    1∶5000000.0100
    下载: 导出CSV

    表  3  本文系统与Simoa HD-X系统性能参数对比

    Table  3.   Performance comparison between the proposed system and Simoa HD-X system

    性能参数Simoa系统本系统
    取样量1~100 μL1~100 μL
    反应量0.048 μL0.2~1 μL
    检测限0.01~100 pg/mL0.001~1 pg/mL
    动态范围≥4个数量级≥3个数量级
    精确度<10% CVs<10% CVs
    下载: 导出CSV
  • [1] 田丽丽, 杨新宇, 代小伟, 等. 免疫学检测联合痰涂片和痰培养检测在活动性肺结核临床诊断中的价值[J]. 中国防痨杂志,2021,43(10):1073-1078. doi: 10.3969/j.issn.1000-6621.2021.10.017

    TIAN L L, YANG X Y, DAI X W, et al. Diagnostic value of immunological test combined with sputum smear and sputum culture in clinical diagnosis of active pulmonary tuberculosis[J]. Chinese Journal of Antituberculosis, 2021, 43(10): 1073-1078. (in Chinese). doi: 10.3969/j.issn.1000-6621.2021.10.017
    [2] 张雪洁, 汤家宝, 李廷栋, 等. 单分子免疫检测技术研究进展[J]. 中国生物工程杂志,2021,41(4):47-54.

    ZHANG X J, TANG J B, LI T D, et al. Advances in single molecule immunoassay[J]. China Biotechnology, 2021, 41(4): 47-54. (in Chinese).
    [3] RISSIN D M, KAN C W, CAMPBELL T G, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations[J]. Nature Biotechnology, 2010, 28(6): 595-599. doi: 10.1038/nbt.1641
    [4] WANG X, OGATA A F, WALT D R. Ultrasensitive detection of enzymatic activity using single molecule arrays[J]. Journal of the American Chemical Society, 2020, 142(35): 15098-15106. doi: 10.1021/jacs.0c06599
    [5] COHEN L, WALT D R. Single-molecule arrays for protein and nucleic acid analysis[J]. Annual Review of Analytical Chemistry, 2017, 10: 345-363. doi: 10.1146/annurev-anchem-061516-045340
    [6] MACCHIA E, MANOLI K, HOLZER B, et al. Single-molecule detection with a millimetre-sized transistor[J]. Nature Communications, 2018, 9(1): 3223. doi: 10.1038/s41467-018-05235-z
    [7] HOLZMEISTER P, ACUNA G P, GROHMANN D, et al. Breaking the concentration limit of optical single-molecule detection[J]. Chemical Society Reviews, 2014, 43(4): 1014-1028. doi: 10.1039/C3CS60207A
    [8] RISSIN D M, KAN C W, CAMPBELL T G, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations[J]. Nature Biotechnology, 2010, 28(6): 595-599. (查阅网上资料, 本条文献与第3条文献重复, 请确认).
    [9] POLLOCK N R, BANZ A, CHEN X H, et al. Comparison of Clostridioides difficile stool toxin concentrations in adults with symptomatic infection and asymptomatic carriage using an ultrasensitive quantitative immunoassay[J]. Clinical Infectious Diseases, 2019, 68(1): 78-86. doi: 10.1093/cid/ciy415
    [10] YELLESWARAPU V, BUSER J R, HABER M, et al. Mobile platform for rapid sub–Picogram-per-milliliter, multiplexed, digital droplet detection of proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(10): 4489-4495.
    [11] SU Y, ZHOU L. Review of single-molecule immunoassays: non-chip and on-chip assays[J]. Analytica Chimica Acta, 2024, 1322: 342885. doi: 10.1016/j.aca.2024.342885
    [12] FARKA Z, MICKERT M J, PASTUCHA M, et al. Advances in optical single-molecule detection: en route to supersensitive bioaffinity assays[J]. Angewandte Chemie International Edition, 2020, 59(27): 10746-10773. doi: 10.1002/anie.201913924
    [13] ROSSI M, BARNKOB R. A fast and robust algorithm for general defocusing particle tracking[J]. Measurement Science and Technology, 2020, 32(1): 014001. doi: 10.1088/1361-6501/abad71
    [14] HAIN R, KÄHLER C J, RADESPIEL R. Principles of a volumetric velocity measurement technique based on optical aberrations[C]. Proceedings of the Conference on Imaging Measurement Methods for Flow Analysis, Springer, 2009: 1-10.
    [15] PEREIRA F, LU J, CASTAÑO-GRAFF E, et al. Microscale 3D flow mapping with μDDPIV[J]. Experiments in Fluids, 2007, 42(4): 589-599. doi: 10.1007/s00348-007-0267-5
    [16] OLSEN M G, ADRIAN R J. Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry[J]. Experiments in Fluids, 2000, 29(S1): S166-S174.
    [17] POORBAUGH J, SAMANTA T, BRIGHT S W, et al. Measurement of IL-21 in human serum and plasma using ultrasensitive MSD S-PLEX® and Quanterix SiMoA methodologies[J]. Journal of Immunological Methods, 2019, 466: 9-16. doi: 10.1016/j.jim.2018.12.005
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  11
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-14
  • 录用日期:  2025-04-16
  • 网络出版日期:  2025-05-21

目录

    /

    返回文章
    返回