留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于过压驱动的穆勒矩阵高速测量方法研究

巩忠轩 李子凡 龚君豪 韩琪锐 于壁君 毛红敏 樊丽娜 陆焕钧 曹召良

巩忠轩, 李子凡, 龚君豪, 韩琪锐, 于壁君, 毛红敏, 樊丽娜, 陆焕钧, 曹召良. 基于过压驱动的穆勒矩阵高速测量方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0055
引用本文: 巩忠轩, 李子凡, 龚君豪, 韩琪锐, 于壁君, 毛红敏, 樊丽娜, 陆焕钧, 曹召良. 基于过压驱动的穆勒矩阵高速测量方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0055
GONG Zhong-xuan, LI Zi-fan, GONG Jun-hao, HAN Qi-rui, YU Bi-jun, MAO Hong-min, FAN Li-na, LU Huan-jun, CAO Zhao-liang. Research on high-speed measurement of Mueller matrix based on overdriving technique[J]. Chinese Optics. doi: 10.37188/CO.2025-0055
Citation: GONG Zhong-xuan, LI Zi-fan, GONG Jun-hao, HAN Qi-rui, YU Bi-jun, MAO Hong-min, FAN Li-na, LU Huan-jun, CAO Zhao-liang. Research on high-speed measurement of Mueller matrix based on overdriving technique[J]. Chinese Optics. doi: 10.37188/CO.2025-0055

基于过压驱动的穆勒矩阵高速测量方法研究

cstr: 32171.14.CO.2025-0055
基金项目: 江苏省研究生科研与实践创新计划项目(No. KYCX24_3425);“十四五”江苏省重点学科资助(No. 2021135);国家自然科学基金青年科学基金项目(No. 22205155);江苏省自然科学基金青年基金项目(No. BK20220640);江苏省高校基础科学(自然科学)研究面上项目(No. 22KJB150011)
详细信息
    作者简介:

    巩忠轩(2000—),男,河南郑州人,硕士研究生,2022年于上海第二工业大学获得学士学位,主要研究方向为光电检测与仪器。E-mail:a280738372@163.com

    陆焕钧(1989—),女,江苏南通人,博士研究生。2010年及2013年于南京大学获得学士及硕士学位,2018年于英国谢菲尔德大学获得博士学位。主要从事液晶自组装结构以及X射线晶体学研究。E-mail:luhuanjun@usts.edu.cn

    曹召良(1974—),男,河南济源人,博士,教授,博士研究生导师,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事液晶自适应光学系统的光学设计、光学实验以及理论分析和模拟工作。E-mail:caozl@usts.edu.cn

  • 中图分类号: TP394.1;TH691.9

Research on high-speed measurement of Mueller matrix based on overdriving technique

Funds: Supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX24_3425); This work was supported by Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135); the National Natural Science Foundation of China (No. 22205155); the Natural Science Foundation of Jiangsu Province (No. BK20220640); the Natural Science Research of Jiangsu Higher Education Institutions of China (No. 22KJB150011)
More Information
  • 摘要:

    为实现穆勒矩阵的高速测量,本文提出一种基于过压驱动的穆勒矩阵高速测量方法。首先,建立基于液晶的穆勒矩阵仿真模型,仿真分析了待测物穆勒矩阵测量的可行性。其次,给出液晶相位延迟器的过压驱动方法,并利用过压驱动技术缩短了偏振态的切换时间。最后,实验测量了空气、偏振片及1/4波片的穆勒矩阵。实验结果表明:6个偏振态的生成频率从71 Hz提升到417 Hz,穆勒矩阵的测量频率从10 Hz提升到60 Hz,提升约6倍;同时,穆勒矩阵测量均方误差(MSE)优于0.0004,消光比优于750∶1,椭偏度低于1.06%。因此,过压驱动方法能够实现穆勒矩阵的高速测量,进一步推动其在动态偏振分析、光学元件在线质检、生物医学成像等实时检测领域的应用。

     

  • 图 1  穆勒矩阵测量光路

    Figure 1.  Mueller matrix measurement optical setup

    图 2  检偏器检测的各偏振态透过率仿真结果

    Figure 2.  Simulated transmittance for each polarization state passed through the polarizer

    图 3  计算得到的空气穆勒矩阵

    Figure 3.  Calculated Mueller matrix of air

    图 4  待测物穆勒矩阵仿真结果:(a) 90°偏振片;(b) 90°1/4波片

    Figure 4.  Simulated Mueller matrix of sample: (a) 90° polarizer; (b) 90° quarter wave plate

    图 5  液晶的过压驱动原理

    Figure 5.  Principle of overdriving for liquid crystal

    图 6  液晶相位延迟量测量光路

    Figure 6.  Optical configuration for of liquid crystal phase delay measurement

    图 7  相位延迟量与驱动电压的关系

    Figure 7.  Phase delay as a function of driving voltage

    图 8  示波器存储的光强变化曲线

    Figure 8.  Oscilloscope stored light intensity change curve

    图 9  相位变化量与响应时间的关系

    Figure 9.  Relation between phase change and response time

    图 10  相位延迟量从0.25 λ切换到1 λ的过压驱动:(a)正常驱动;(b)过压驱动

    Figure 10.  Overdriving for the phase delay switched from 0.25 λ to 1 λ: (a) Normal; (b) Overdriving

    图 11  测量穆勒矩阵的偏振态切换时间

    Figure 11.  Switch time for measurement of Mueller matrix

    图 12  偏振态产生实验光路

    Figure 12.  Experimental optical setup for polarization state generation

    图 13  线偏振光的光强变化

    Figure 13.  Intensity change for linear polarized light

    图 14  左旋圆偏振光的光强变化

    Figure 14.  Intensity change for left-hand circularly polarized light

    图 15  穆勒矩阵测量光路

    Figure 15.  Experimental configuration for Mueller matrix measurement

    图 16  测量的空气穆勒矩阵

    Figure 16.  Measured Mueller Matrix of air

    图 17  测量的待测物穆勒矩阵:(a) 90°偏振片;(b) 90°1/4波片

    Figure 17.  Measured Mueller matrix of sample: (a) 90° polarizer; (b) 90° 1/4 waveplate

    表  1  偏振态与液晶相位延迟量对应关系

    Table  1.   Relation between polarization state and liquid crystal phase delay

    δ1 δ2 Stokes矢量 偏振态
    0.5 1 (1 1 0 0) 0°线偏振(H)
    0.25 0.25 (1 0 1 0) 45°线偏振(P)
    1 1 (1 −1 0 0) 90°线偏振(V)
    0.25 0.75 (1 0 −1 0) 135°线偏振(M)
    0.75 0.5 (1 0 0 1) 左旋圆偏振(L)
    0.25 0.5 (1 0 0 −1) 右旋圆偏振(R)
    下载: 导出CSV

    表  2  穆勒矩阵仿真测量的光强

    Table  2.   Simulated light intensity for Mueller matrix test

    HPVMLR
    H10.5010.50.5
    P0.510.500.50.5
    V00.510.50.50.5
    M0.500.510.50.5
    L0.50.50.50.510
    R0.50.50.50.501
    下载: 导出CSV

    表  3  偏振态切换时间

    Table  3.   Switch time of polarization state

    偏振态LCVR-1/λ时间/msLCVR-2/λ时间/ms
    ①H→P0.5→0.250.61→0.250.6
    ②P→V0.25→13.50.25→13.5
    ③V→M1→0.250.61→0.750.8
    ④M→L0.25→0.754.20.75→0.50.7
    ⑤L→R0.75→0.250.70.5→0.50
    ⑥R→H0.25→0.53.80.5→14.3
    下载: 导出CSV

    表  4  偏振态产生实验结果

    Table  4.   Experimental results for Polarization generation

    偏振态 最小值(μw) 最大值(mw) 消光比 椭偏度
    H 10.1 7.987 790∶1
    P 10.5 7.975 759∶1
    V 10.4 7.962 765∶1
    M 10.2 7.976 781∶1
    L 3.941 3.982 1.03%
    R 3.936 3.978 1.06%
    下载: 导出CSV

    表  5  穆勒矩阵的测量光强

    Table  5.   Measured intensity for Mueller matrix

    HPVMLR
    H5.522.550.0552.682.652.78
    P2.665.492.530.0632.622.74
    V0.0562.585.512.452.622.73
    M2.540.0582.615.572.792.65
    L2.752.832.942.645.480.069
    R2.692.652.722.740.0585.51
    下载: 导出CSV
  • [1] SI L, HUANG T Y, WANG X J. Deep learning Mueller matrix feature retrieval from a snapshot Stokes image[J]. Optics Express, 2022, 30(6): 8676-8689. doi: 10.1364/OE.451612
    [2] DONG H, ZHANG H L, HU D J J. Polar decomposition of Jones matrix and Mueller matrix of coherent Rayleigh backscattering in single-mode fibers[J]. Sensors, 2024, 24(6): 1760. doi: 10.3390/s24061760
    [3] SINGH M D, GHOSH N, VITKIN I A. Mueller matrix polarimetry in biomedicine: enabling technology, biomedical applications, and future prospects[M]//RAMELLA-ROMAN J C, NOVIKOVA T. Polarized Light in Biomedical Imaging and Sensing: Clinical and Preclinical Applications. Cham: Springer, 2022: 61-103.
    [4] ZHANG Y N, WU J Y, JIA L N, et al. Advanced optical polarizers based on 2D materials[J]. npj Nanophotonics, 2024, 1(1): 28. doi: 10.1038/s44310-024-00028-3
    [5] GE J G, YUAN B, CHEN H J, et al. Anisotropy in microstructural features and tensile performance of laser powder bed fusion NiTi alloys[J]. Journal of Materials Research and Technology, 2023, 24: 8656-8668. doi: 10.1016/j.jmrt.2023.05.046
    [6] SOLEILLET P. Sur les paramètres caractérisant la polarisation partielle de la lumière dans les phénomènes de fluorescence[J]. Annales De Physique, 1929, 10(12): 23-97. doi: 10.1051/anphys/192910120023
    [7] MUELLER H. The foundation of optics[J]. Journal of the Optical Society of America, 1948, 38(7): 661-669.
    [8] BICKEL W S, BAILEY W M. Stokes vectors, Mueller matrices, and polarized scattered light[J]. American Journal of Physics, 1985, 53(5): 468-478. doi: 10.1119/1.14202
    [9] GOLDSTEIN D H, CHIPMAN R A. Error analysis of a Mueller matrix polarimeter[J]. Journal of the Optical Society of America A, 1990, 7(4): 693-700. doi: 10.1364/JOSAA.7.000693
    [10] LU S Y, CHIPMAN R A. Interpretation of Mueller matrices based on polar decomposition[J]. Journal of the Optical Society of America A, 1996, 13(5): 1106-1113. doi: 10.1364/JOSAA.13.001106
    [11] FUJIWARA H. Spectroscopic Ellipsometry: Principles and Applications[M]. Chichester: John Wiley & Sons, 2007.
    [12] GU H G, CHEN X G, ZHANG CH W, et al. Study of the retardance of a birefringent waveplate at tilt incidence by Mueller matrix ellipsometer[J]. Journal of Optics, 2018, 20(1): 015401. doi: 10.1088/2040-8986/aa9b05
    [13] 赵鑫鑫, 宋茂新, 许智龙, 等. 离轴三反望远物镜的穆勒矩阵测量[J]. 光学学报,2023,43(12):1212004. doi: 10.3788/AOS221873

    ZHAO X X, SONG M X, XU ZH L, et al. Mueller matrix measurement of off-axis three-mirror telescope objective[J]. Acta Optica Sinica, 2023, 43(12): 1212004. (in Chinese). doi: 10.3788/AOS221873
    [14] LAUDE-BOULESTEIX B, DE MARTINO A, DRÉVILLON B, et al. Mueller polarimetric imaging system with liquid crystals[J]. Applied Optics, 2004, 43(14): 2824-2832. doi: 10.1364/AO.43.002824
    [15] AAS L M S, ELLINGSEN P G, KILDEMO M. Near infra-red Mueller matrix imaging system and application to retardance imaging of strain[J]. Thin Solid Films, 2011, 519(9): 2737-2741. doi: 10.1016/j.tsf.2010.12.093
    [16] SHENG SH, CHEN X G, CHEN CH, et al. Design and calibration of a Mueller matrix microscope based on liquid crystal variable retarders[J]. Thin Solid Films, 2023, 770: 139779. doi: 10.1016/j.tsf.2023.139779
    [17] 陈冬静, 崔宏青, 冯亚云, 等. 一种新的测量扭曲向列相液晶盒盒厚和扭曲角的Stokes矢量法[J]. 液晶与显示,2007,22(6):662-667. doi: 10.3969/j.issn.1007-2780.2007.06.004

    CHEN D J, CUI H Q, FENG Y Y, et al. Novel Stokes parameter method for determination of cell thickness and twist angle of twisted nematic liquid crystal cells[J]. Chinese Journal of Liquid Crystals and Displays, 2007, 22(6): 662-667. (in Chinese). doi: 10.3969/j.issn.1007-2780.2007.06.004
    [18] 李作恩, 鞠学平, 胡春晖, 等. 通道型偏振光谱仪望远镜组偏振效应分析与优化[J]. 液晶与显示,2023,38(12):1728-1735. doi: 10.37188/CJLCD.2023-0049

    LI Z E, JU X P, HU CH H, et al. Analysis and optimization of polarization effect of telescope group of channel polarization spectrometer[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(12): 1728-1735. (in Chinese). doi: 10.37188/CJLCD.2023-0049
    [19] 杨志勇, 张志伟, 蔡伟, 等. 基于Mueller矩阵的目标偏振特性分析[J]. 光学学报,2023,43(1):0112005. doi: 10.3788/AOS221004

    YANG ZH Y, ZHANG ZH W, CAI W, et al. Analysis of polarization characteristics of targets based on Mueller matrix[J]. Acta Optica Sinica, 2023, 43(1): 0112005. (in Chinese). doi: 10.3788/AOS221004
    [20] 史文雄, 卢绮涵, 梁如标, 等. 用于液晶调控器件的过压驱动技术进展[J]. 液晶与显示,2024,39(3):384-392. doi: 10.37188/CJLCD.2024-0049

    SHI W X, LU Q H, LIANG R B, et al. Development of overdriving technology for liquid crystal modulatory devices[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(3): 384-392. (in Chinese). doi: 10.37188/CJLCD.2024-0049
    [21] GUO H Y, LI Q, XU Y J, et al. Line of sight correction of high-speed liquid crystal using overdriving technology[J]. Electronics, 2020, 9(9): 1477. doi: 10.3390/electronics9091477
    [22] 芦永军, 曹召良, 曲艳玲, 等. 液晶波前校正器动态位相响应特性研究[J]. 液晶与显示,2012,27(6):730-735. doi: 10.3788/YJYXS20122706.0730

    LU Y J, CAO ZH L, QU Y L, et al. Dynamic phase response of liquid crystal wavefront corrector[J]. Chinese Journal of Liquid Crystals and Displays, 2012, 27(6): 730-735. (in Chinese). doi: 10.3788/YJYXS20122706.0730
    [23] 杜莹, 陈梅蕊, 刘禹彤, 等. 基于掩模光刻的液晶波前校正器设计与制备[J]. 中国光学(中英文),2024,17(2):324-333. doi: 10.37188/CO.2023-0137

    DU Y, CHEN M R, LIU Y T, et al. Design and fabrication of liquid crystal wavefront corrector based on mask lithography[J]. Chinese Optics, 2024, 17(2): 324-333. (in Chinese). doi: 10.37188/CO.2023-0137
    [24] GAMEL O, JAMES D F V. Measures of quantum state purity and classical degree of polarization[J]. Physical Review A, 2012, 86(3): 033830. doi: 10.1103/PhysRevA.86.033830
    [25] 张郁文, 刘丙才, 王红军, 等. 同步相移横向剪切干涉中偏振器件的误差建模[J]. 中国光学(中英文),2024,17(3):640-647. doi: 10.37188/CO.2023-0152

    ZHANG Y W, LIU B C, WANG H J, et al. Error modeling of polarization devices in simultaneous phase-shifted lateral shearing interferometry[J]. Chinese Optics, 2024, 17(3): 640-647. (in Chinese). doi: 10.37188/CO.2023-0152
    [26] 王启东, 穆全全, 刘璐璐, 等. 宽波段大视角液晶偏振转换器研究进展[J]. 液晶与显示,2024,39(5):683-696. doi: 10.37188/CJLCD.2024-0063

    WANG Q D, MU Q Q, LIU L L, et al. Research progress on liquid crystal polarization converter with a large field of view and broadband[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(5): 683-696. (in Chinese). doi: 10.37188/CJLCD.2024-0063
    [27] 史浩东, 卢琦, 赵义武, 等. 基于阵列光学的快速多维度成像制导光学系统设计[J]. 中国光学(中英文),2024,17(6):1418-1430. doi: 10.37188/CO.2023-0206

    SHI H D, LU Q, ZHAO Y W, et al. Design of a fast multi-dimensional imaging guidance optical system based on array optics[J]. Chinese Optics, 2024, 17(6): 1418-1430. (in Chinese). doi: 10.37188/CO.2023-0206
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  7
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-07-04

目录

    /

    返回文章
    返回