留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单相机的空间目标相对位姿测量系统

支帅 丁国鹏 韩世豪 张永合 朱振才

支帅, 丁国鹏, 韩世豪, 张永合, 朱振才. 基于单相机的空间目标相对位姿测量系统[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0057
引用本文: 支帅, 丁国鹏, 韩世豪, 张永合, 朱振才. 基于单相机的空间目标相对位姿测量系统[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0057
ZHI Shuai, DING Guo-peng, HAN Shi-hao, ZHANG Yong-he, ZHU Zhen-cai. Monocular camera-based relative pose measurement system for space targets[J]. Chinese Optics. doi: 10.37188/CO.2025-0057
Citation: ZHI Shuai, DING Guo-peng, HAN Shi-hao, ZHANG Yong-he, ZHU Zhen-cai. Monocular camera-based relative pose measurement system for space targets[J]. Chinese Optics. doi: 10.37188/CO.2025-0057

基于单相机的空间目标相对位姿测量系统

cstr: 32171.14.CO.2025-0057
基金项目: “十四五”国家重点研发计划(No. 2024YFB3909400);
详细信息
    作者简介:

    支 帅(1989—),女,辽宁锦州,博士研究生,2012年于湖南大学获得本科学位,2015年于中国科学院长春光学精密机械与物理研究所获得硕士学位,现于中国科学院微小卫星创新研究院,主要从事智能测量系统研究等相关工作。E-mail:zhis@microsate.com

  • 中图分类号: TP394.1;TH691.9

Monocular camera-based relative pose measurement system for space targets

Funds: Supported by
More Information
  • 摘要:

    为提高测量系统的稳定性及精度,实现航天器超近距离高精度对接,本文提出了一种基于单相机及合作靶标的相对位姿测量系统,用于双星间相对位置及姿态的高精度测量。通过设计追踪星视觉相机及目标星LED合作靶标,在双星距离为50米到0.4米的范围内,实现了高精度的相对位姿测量。首先,通过设计的远近场LED靶标,实现了相机与靶标间的协同工作,保证在50米到0.4米的距离均能清晰成像;其次,根据设计的靶标特性,提出了多尺度质心提取算法,利用斜率一致性约束与间距比筛选,在复杂光照下稳定获取特征目标;最后,结合靶标几何约束的初值估计,实现了目标星相对于追踪星的位姿解算,为进一步提高测量精度,引入非线性优化方法对位姿结果进行迭代优化,有效降低了测量误差。试验结果表明,系统测量精度由远及近逐渐提高,在距离为0.4米时,位置测量精度优于1毫米,姿态测量精度优于0.2度,满足超近距离对接任务需求。本方案为空间在轨目标相对位姿测量提供了高精度、高稳定性的技术支撑,具有重要的工程应用价值。

     

  • 图 1  测量相机及坐标系定义

    Figure 1.  Measurement camera and coordinate frame definition

    图 2  LED靶标及坐标系定义

    Figure 2.  LED targets and coordinate frame definition

    图 3  针孔成像模型

    Figure 3.  Pinhole Optics model

    图 4  图像坐标系

    Figure 4.  Image coordinate frame

    图 5  交叉投影法原理图

    Figure 5.  Schematic diagram of cross-projection method

    图 6  质心提取算法流程图

    Figure 6.  Flowchart of centroid extraction algorithm

    图 7  航天器间相对位姿示意图

    Figure 7.  Conceptual diagram of inter-spacecraft relative pose

    图 8  相对距离解算示意图

    Figure 8.  Diagram of relative range solution

    图 9  相对位姿解算算法流程图

    Figure 9.  Flowchart of relative pose solution algorithm

    图 10  光学成像组件实物图

    Figure 10.  Photograph of optical imaging assembly

    图 11  靶标组件实物图

    Figure 11.  Photograph of cooperative target assembly

    图 12  光学成像组件与靶标组件装星图

    Figure 12.  Flight integration diagram of optical imaging assembly and cooperative target assembly

    图 13  多尺度质心提取算法结果

    Figure 13.  Output of multi-scale centroid extraction algorithm

    图 14  50 m相对位置与姿态数据分布图

    Figure 14.  Relative position and attitude distribution map at 50 m range

    图 15  40 m相对位置与姿态数据分布图

    Figure 15.  Relative position and attitude distribution map at 40 m range

    图 16  20 m相对位置与姿态数据分布图

    Figure 16.  Relative position and attitude distribution map at 20 m range

    图 17  10 m相对位置与姿态数据分布图

    Figure 17.  Relative position and attitude distribution map at 10 m range

    图 18  5.6 m相对位置与姿态数据分布图

    Figure 18.  Relative position and attitude distribution map at 5.6 m range

    图 19  1.7 m相对位置与姿态数据分布图

    Figure 19.  Relative position and attitude distribution map at 1.7 m range

    图 20  0.4 m相对位置与姿态数据分布图

    Figure 20.  Relative position and attitude distribution map at 0.4 m range

    表  1  50 m相对位置与姿态测量结果

    Table  1.   Relative position and attitude measurement results at 50 m range

    ParametersStdMean-valueMax-vMin-v
    T-x(mm)1.20151013.50441010.90751016.7402
    T-y(mm)3.9683276.5156267.5542285.0395
    T-z(mm)52.873650780.029350652.730550832.2031
    $\varphi $ (°)0.0810.051880.01760.0672
    $\theta $ (°)0.01540.078400.10640.0238
    $\psi $(°)0.00100.00460.00270.0079
    下载: 导出CSV

    表  2  40 m相对位置与姿态测量结果

    Table  2.   Relative position and attitude measurement results at 40 m range

    ParametersStdMean-valueMax-vMin-v
    T-x(mm)0.4432808.2581806.8610809.6720
    T-y(mm)0.2770297.0678297.9350296.2810
    T-z(mm)19.999840649.495440590.000040699.5000
    $\varphi $ (°)0.00500.08450.06510.0972
    $\theta $ (°)0.01000.06800.10740.0351
    $\psi $(°)0.00150.00550.00190.0097
    下载: 导出CSV

    表  3  20 m相对位置与姿态测量结果

    Table  3.   Relative position and attitude measurement results at 20 m range

    ParametersStdMean-valueMax-vMin-v
    T-x(mm)0.3180283.5990283.2110285.5420
    T-y(mm)0.2050245.5650246.7930244.7530
    T-z(mm)4.364020730.600020715.200020742.5000
    $\varphi $ (°)0.01070.06450.00520.0827
    $\theta $ (°)0.01080.05950.08070.0091
    $\psi $(°)0.00110.00790.00540.0111
    下载: 导出CSV

    表  4  10 m相对位置与姿态测量结果

    Table  4.   Relative position and attitude measurement results at 10 m range

    ParametersStdMean-valueMax-vMin-v
    T-x(mm)0.7960193.6940190.0220194.9690
    T-y(mm)0.6060209.2280210.2260208.2550
    T-z(mm)4.960010329.852010324.066010345.1570
    $\varphi $ (°)0.00510.06650.05080.0798
    $\theta $ (°)0.00550.05840.06700.0420
    $\psi $(°)0.00060.00650.00410.0079
    下载: 导出CSV

    表  5  5.6 m相对位置与姿态测量结果

    Table  5.   Relative position and attitude measurement results at 5.6 m range

    ParametersStdMean-valueMax-vMin-v
    T-x(mm)0.145036.280036.591036.0940
    T-y(mm)0.9140118.6200119.2630117.8860
    T-z(mm)1.62905583.15005576.18305591.8940
    $\varphi $ (°)0.02300.00800.07160.0676
    $\theta $ (°)0.02500.00200.10470.0843
    $\psi $(°)0.00110.01490.01280.0192
    下载: 导出CSV

    表  6  1.7 m相对位置与姿态测量结果

    Table  6.   Relative position and attitude measurement results at 1.7 m range

    Parameters Std Mean-value Max-v Min-v
    T-x(mm) 0.2270 11.8730 12.4530 11.6760
    T-y(mm) 0.2810 65.3370 65.7950 64.9990
    T-z(mm) 0.1870 1654.8800 1654.3430 1655.4240
    $\varphi $ (°) 0.0020 0.0032 0.0078 0.0029
    $\theta $ (°) 0.0036 0.0691 0.0792 0.0574
    $\psi $(°) 0.0002 0.0197 0.0192 0.0201
    下载: 导出CSV

    表  7  0.4 m相对位置与姿态测量结果

    Table  7.   Relative position and attitude measurement results at 0.4 m range

    ParametersStdMean-valueMax-vMin-v
    T-x(mm)0.08−58.6358.3670−58.72
    T-y(mm)0.00345.4145.47845.40
    T-z(mm)0.10−405.79−402.922−405.89
    $\varphi $ (°)0.003−0.0410.0009−0.043
    $\theta $ (°)0.006−0.184−0.046−0.07
    $\psi $(°)0.00030.0157−0.0070.0161
    下载: 导出CSV
  • [1] ZHANG H F, WU J X, LIU D L, et al. Research on rocket engine pose measurement technology based on monocular vision[J]. Proceedings of SPIE, 2023, 12934: 129340I.
    [2] SEO C T, KANG S W, CHO M. Three-dimensional free view reconstruction in axially distributed image sensing[J]. Chinese Optics Letters, 2017, 15(8): 081102. doi: 10.3788/COL201715.081102
    [3] HEATON A F, HOWARD R T, PINSON R M. Orbital express AVGS validation and calibration for automated rendezvous[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA, 2008. (查阅网上资料, 未找到本条文献页码, 请确认).
    [4] KAWANO I, MOKUNO M, KASAI T, et al. Result of autonomous rendezvous docking experiment of engineering test Satellite-VII[J]. Journal of Spacecraft and Rockets, 2001, 38(1): 105-111. doi: 10.2514/2.3661
    [5] YAN K, XIONG ZH, LAO D B, et al. Attitude measurement method based on 2DPSD and monocular vision[J]. Proceedings of SPIE, 2019, 11338: 113382L.
    [6] MAO J F, HUANG W, SHENG W G. Target distance measurement method using monocular vision[J]. IET Image Processing, 2020, 14(13): 3181-3187. doi: 10.1049/iet-ipr.2019.1293
    [7] 屈也频, 刘坚强, 侯旺. 单目视觉高精度测量中的合作目标图形设计[J]. 光学学报,2020,40(13):1315001. doi: 10.3788/AOS202040.1315001

    QU Y P, LIU J Q, HOU W. Graphics design of cooperative targets on monocular vision high precision measurement[J]. Acta Optica Sinica, 2020, 40(13): 1315001. (in Chinese). doi: 10.3788/AOS202040.1315001
    [8] 董永英, 张高鹏, 常三三, 等. 一种基于单目视觉的空间目标位姿测量算法及其精度定量分析[J]. 光子学报,2021,50(11):1112003. doi: 10.3788/gzxb20215011.1112003

    DONG Y Y, ZHANG G P, CHANG S S, et al. A pose measurement algorithm of space target based on monocular vision and accuracy analysis[J]. Acta Photonica Sinica, 2021, 50(11): 1112003. (in Chinese). doi: 10.3788/gzxb20215011.1112003
    [9] RONDAO D, HE L, AOUF N. AI-based monocular pose estimation for autonomous space refuelling[J]. Acta Astronautica, 2024, 220: 126-140. doi: 10.1016/j.actaastro.2024.04.003
    [10] SANSONE F, FRANCESCONI A, OLIVIERI L, et al. Low-cost relative navigation sensors for miniature spacecraft and drones[C]. 2015 IEEE Metrology for Aerospace (MetroAeroSpace), IEEE, 2015: 389-394.
    [11] PIRAT C, ANKERSEN F, WALKER R, et al. Vision based navigation for autonomous cooperative docking of CubeSats[J]. Acta Astronautica, 2018, 146: 418-434. doi: 10.1016/j.actaastro.2018.01.059
    [12] BUI M T, DOSKOCIL R, KRIVANEK V. Distance and angle measurement using monocular vision[C]. 2018 18th International Conference on Mechatronics, IEEE, 2018: 1-6.
    [13] 陈天择, 葛宝臻, 罗其俊. 重投影优化的自由双目相机位姿估计方法[J]. 中国光学,2021,14(6):1400-1409. doi: 10.37188/CO.2021-0105

    CHEN T Z, GE B ZH, LUO Q J. Pose estimation for free binocular cameras based on reprojection error optimization[J]. Chinese Optics, 2021, 14(6): 1400-1409. (in Chinese). doi: 10.37188/CO.2021-0105
    [14] CAPUANO V, KIM K, HARVARD A, et al. Monocular-based pose determination of uncooperative space objects[J]. Acta Astronautica, 2020, 166: 493-506. doi: 10.1016/j.actaastro.2019.09.027
    [15] ZHANG ZH, BIN W, KANG J H, et al. Dynamic pose estimation of uncooperative space targets based on monocular vision[J]. Applied Optics, 2020, 59(26): 7876-7882. doi: 10.1364/AO.395081
    [16] PIAZZA M, MAESTRINI M, DI LIZIA P. Monocular relative pose estimation pipeline for uncooperative resident space objects[J]. Journal of Aerospace Information Systems, 2022, 19(9): 613-632. doi: 10.2514/1.I011064
  • 加载中
图(20) / 表(7)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-07-09

目录

    /

    返回文章
    返回