留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单一透镜材料宽温度范围空间相机无热化设计

李恩泽 潘宇 顾国超 蒋雪 林冠宇 李博

李恩泽, 潘宇, 顾国超, 蒋雪, 林冠宇, 李博. 单一透镜材料宽温度范围空间相机无热化设计[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0065
引用本文: 李恩泽, 潘宇, 顾国超, 蒋雪, 林冠宇, 李博. 单一透镜材料宽温度范围空间相机无热化设计[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0065
LI En-ze, PAN Yu, GU Guo-chao, JIANG Xue, LIN Guan-yu, LI Bo. Athermal design of a space camera using a single lens material over a wide temperature range[J]. Chinese Optics. doi: 10.37188/CO.2025-0065
Citation: LI En-ze, PAN Yu, GU Guo-chao, JIANG Xue, LIN Guan-yu, LI Bo. Athermal design of a space camera using a single lens material over a wide temperature range[J]. Chinese Optics. doi: 10.37188/CO.2025-0065

单一透镜材料宽温度范围空间相机无热化设计

cstr: 32171.14.CO.2025-0065
基金项目: 院地合作项目(2024SYHZ0025)、科技部重点研发计划(2022YFB3903202)
详细信息
    作者简介:

    李恩泽(2001—),男,广东茂名人,学士,硕士研究生,主要从事光学设计方面的研究。E-mail:2693591677@qq.com

    李 博(1981—),男,吉林梨树人,博士,研究员,2011年于中国科学院大学获得博士学位,现为中国科学院长春光学精密机械与物理研究所研究员,主要从事空间光学系统设计方面的研究。E-mail:libo0008429@163.com

  • 中图分类号: TH743

Athermal design of a space camera using a single lens material over a wide temperature range

Funds: Provincial-Institutional Cooperation Special Fund(2024SYHZ0025)、Key Research and Development Program of the Ministry of Science and Technology(2022YFB3903202)
More Information
  • 摘要:

    折反式空间相机广泛应用于空间探测领域,但温度变化将会导致成像质量下降。针对该问题,本文对折反式空间相机进行了宽温度范围的无热化设计。首先对相关的光学元件、机械结构等部件进行了温度影响分析,并总结消热差的便捷方法。接着以工作在400 nm~1000 nm波段,焦距为525 mm,F数为3.5的空间相机为设计对象,通过选择合适的反射镜基底材料和支撑结构材料,只使用熔融石英一种透镜材料校正像差,从而确保折反式光学系统在空间环境运行的性能稳定性并实现宽温度范围无热化。最终仿真结果表明空间相机经过设计优化后可在−60 °C~150 °C温度范围内奈奎斯特频率77 lp/mm处的调制传递函数值优于0.4。该相机的材料物理性能稳定、成像质量好、高低温环境内成像质量稳定,在空间探测等领域具有广泛的应用前景。

     

  • 图 1  同轴两反系统受温度影响示意图

    Figure 1.  Schematic of temperature effects on a coaxial two-mirror system

    图 2  同轴两反系统等效高斯光路图

    Figure 2.  Schematic of equivalent gaussian optical path for coaxial two-mirror systems

    图 3  初始光学系统结构

    Figure 3.  Initial optical system configuration

    图 4  初始光学系统垂轴色差图

    Figure 4.  Transverse chromatic aberration diagram for initial optical system

    图 5  不同温度下初始光学系统MTF图

    Figure 5.  MTF charts of initial optical system at different temperatures

    图 6  对照组1MTF图

    Figure 6.  MTF charts of control group 1

    图 7  优化后光学系统结构

    Figure 7.  Optimized optical system configuration

    图 8  优化后不同温度下光学系统MTF图

    Figure 8.  MTF charts of optimized optical system at different temperature

    图 9  优化后光学系统垂轴色差图

    Figure 9.  Transverse chromatic aberration diagram for optimized optical system

    图 10  对照组2光学系统结构

    Figure 10.  Optical system configuration of control group 2

    图 11  无热化前后热离焦量对比

    Figure 11.  Thermal defocus comparison before and after athermalization

    表  1  空间相机部分常用材料参数

    Table  1.   Some commonly used material parameters of space cameras

    Reflector
    material
    Coefficient of
    thermal expansion
    α(10−6/ °C)
    Mechanical
    structural
    material
    Coefficient of
    thermal expansion
    α(10−6/ °C)
    glass-ceramics 0.05 4J36 Invar 1.8
    Fused quartz 0.5 Titanium alloy 8.8
    Silicon carbide 2.5 Aluminium alloy 23.6
    下载: 导出CSV

    表  2  设计指标

    Table  2.   Design indexes

    Index Value
    Wavelength range 400 nm~1000 nm
    Field of view
    F 3.5
    Focal length 525 mm
    Pixel size 6.5 μm×6.5 μm
    Temperature range −60 °C~150 °C
    下载: 导出CSV

    表  3  初始光学系统结构参数

    Table  3.   Parameters of initial optical system configuration

    Element Materials Coefficient of
    thermal expansion
    α(10−6/ °C)
    Radius
    (mm)
    Constant of the
    quadric surface
    Thickness
    (mm)
    Focal
    (mm)
    Focal power
    (mm−1
    Paraxial ray
    height
    (mm)
    Primary mirrorSilicon Carbide2.5−342.72−1.18−113.62−171.360.0058475
    Secondary mirrorSilicon Carbide2.5−174.08−5.94114.62−87.040.0114925.2725
    Lens 1Silica0.5−64.04\6.06735.350.001368.3877
    Air\−55.35\11.86
    Lens 2Silica0.557.48\6.06393.720.002546.2007
    Air\81.82\16.24
    Lens 3Silica0.5−28.65−1.114.35-92.14-0.010852.5471
    Air\−94.60\15.00
    下载: 导出CSV

    表  4  优化后光学系统结构参数

    Table  4.   Parameters of optimized optical system configuration

    MaterialsRadius/mmConstant of the
    quadric surface
    Thickness/mm
    Silicon Carbide−347.98−1.20−114.55
    Silicon Carbide−181.49−6.3399.97
    Silica−55.15\6.42
    Air−53.20\27.02
    Silica58.42\4.29
    Air83.45\20.47
    Silica−29.45−1.113.00
    Air−78.77\15.00
    下载: 导出CSV

    表  5  各个温度下各个视场点列图的RMS直径

    Table  5.   RMS diameter of spot diagrams at various field points and temperatures

    Temperatures/
    °C
    RMS diameter /μm
    Field
    angle
    0.7° 1.4° 1.6° 1.8°
    −60 4.294 5.5 4.314 3.784 4.518 7.252
    −20 4.592 5.782 4.558 3.868 4.242 6.82
    20 4.9 6.08 4.846 4.032 4.044 6.428
    50 5.136 6.31 5.084 4.202 3.95 6.164
    100 5.538 6.706 5.522 4.56 3.912 5.788
    150 5.948 7.116 5.996 4.994 4.018 5.504
    下载: 导出CSV

    表  6  对照组2各个温度下在奈奎斯特频率处的最低MTF值

    Table  6.   The lowest MTF value at the nyquist frequency for each temperature in the control group 2

    Temperatures/ °C−60−202050100150
    The lowest MTF value0.4520.4730.4750.4750.4830.481
    下载: 导出CSV
  • [1] 曹一青, 沈志娟. 长波红外大孔径长焦距无热化光学系统设计[J]. 光子学报,2024,53(3):0322004. doi: 10.3788/gzxb20245303.0322004

    CAO Y Q, SHEN ZH J. Design of long-wave infrared athermalized optical system with large aperture and long focal length[J]. Acta Photonica Sinica, 2024, 53(3): 0322004. (in Chinese). doi: 10.3788/gzxb20245303.0322004
    [2] PAN G T, LI B, GU G CH, et al. Analysis of the impact of temperature on the spectral shift in ultraviolet hyperspectral imaging spectrometers[J]. Optics Express, 2024, 32(7): 11774-11793. doi: 10.1364/OE.517945
    [3] 张卓, 蔡猛. 双波段红外光学系统无热化设计[J]. 电光与控制,2015,22(5):63-67.

    ZHANG ZH, CAI M. Athermalization design of dual-wavelength infrared optical system[J]. Electronics Optics & Control, 2015, 22(5): 63-67. (in Chinese).
    [4] 孙宏宇. 紧凑型折/衍混合中波红外无热化成像光学系统[J]. 光电技术应用,2016,31(3):20-24.

    SUN H Y. Compact refractive and diffractive hybrid MWIR athermalizing optical imaging system[J]. Electro-Optic Technology Application, 2016, 31(3): 20-24. (in Chinese).
    [5] TAMAGAWA Y, WAKABAYASHI S, TAJIME T. New design method for athermalized optical systems[J]. Proceedings of SPIE, 1992, 1752: 232-238. doi: 10.1117/12.130734
    [6] 胡玉禧, 周绍祥, 相里斌, 等. 消热差光学系统设计[J]. 光学学报,2000,20(10):1386-1391.

    HU Y X, ZHOU SH X, XIANG L B, et al. Design of athermal optical system[J]. Acta Optica Sinica, 2000, 20(10): 1386-1391. (in Chinese).
    [7] LI R G. Passively athermalized broadband optical design using doublet combinations[J]. Applied Optics, 2014, 53(18): 3903-3907. doi: 10.1364/AO.53.003903
    [8] 解娜, 崔庆丰. 基于权重分组的可见光光学系统无热化设计[J]. 光学学报,2018,38(12):1222001. doi: 10.3788/AOS201838.1222001

    XIE N, CUI Q F. Athermalization design of visible light optical system based on grouping by weight[J]. Acta Optica Sinica, 2018, 38(12): 1222001. (in Chinese). doi: 10.3788/AOS201838.1222001
    [9] XIE N, CUI Q F, SUN L, et al. Optical athermalization in the visible waveband using the 1+∑method[J]. Applied Optics, 2019, 58(3): 635-641. doi: 10.1364/AO.58.000635
    [10] LI J, DING Y L, LIU X J, et al. Achromatic and athermal design of aerial catadioptric optical systems by efficient optimization of materials[J]. Sensors, 2023, 23(4): 1754. doi: 10.3390/s23041754
    [11] ZHANG X, FANG X, LI T, et al. Design method for eliminating spectral line tilt in a multiple sub-pupil ultra-spectral imager (MSPUI)[J]. Optics Express, 2024, 32(7): 11583-11599. doi: 10.1364/OE.514538
    [12] ZHANG X, LI B, ZHI D D, et al. Stray light analysis and suppression of a UV multiple sub-pupil ultra-spectral imager[J]. Applied Optics, 2024, 63(23): 6112-6120. doi: 10.1364/AO.531177
    [13] ZHANG L, LI B, LI H SH, et al. Method for designing a grid-slit spectrometer with low spectral-line bending[J]. Optics and Lasers in Engineering, 2024, 183: 108514. doi: 10.1016/j.optlaseng.2024.108514
    [14] 徐思华, 彭小强, 铁贵鹏, 等. 同质材料反射系统热特性研究[J]. 应用光学,2020,41(1):60-66. doi: 10.5768/JAO202041.0101009

    XU S H, PENG X Q, TIE G P, et al. Study on thermal characteristic of homogeneous material reflective system[J]. Applied Optics, 2020, 41(1): 60-66. (in Chinese). doi: 10.5768/JAO202041.0101009
    [15] LIM T Y, PARK S C. Achromatic and athermal lens design by redistributing the element powers on an athermal glass map[J]. Optics Express, 2016, 24(16): 18049. doi: 10.1364/OE.24.018049
    [16] 孙景浩, 杨照华, 吴云, 等. 基于消色差透镜的单像素与计算关联光谱成像[J]. 光学 精密工程,2023,31(16):2333-2342. doi: 10.37188/OPE.20233116.2333

    SUN J H, YANG ZH H, WU Y, et al. A single-pixel and computational ghost spectral imaging system based on achromatic lens[J]. Optics and Precision Engineering, 2023, 31(16): 2333-2342. (in Chinese). doi: 10.37188/OPE.20233116.2333
    [17] 张洪伟, 丁亚林, 马迎军, 等. 红外双波段双视场成像告警系统设计[J]. 光学 精密工程,2020,28(6):1283-1294. doi: 10.3788/OPE.20202806.1283

    ZHANG H W, DING Y L, MA Y J, et al. Design of infrared dual-band/dual-FOV imaging early warning system[J]. Optics and Precision Engineering, 2020, 28(6): 1283-1294. (in Chinese). doi: 10.3788/OPE.20202806.1283
    [18] 叶卉, 李晓峰, 崔壮壮, 等. 熔石英玻璃高效低缺陷磁辅助抛光[J]. 光学 精密工程,2022,30(15):1857-1867. doi: 10.37188/OPE.20223015.1857

    YE H, LI X F, CUI ZH ZH, et al. Magnetic-assisted polishing of fused silica optics with high efficiency and low defects[J]. Optics and Precision Engineering, 2022, 30(15): 1857-1867. (in Chinese). doi: 10.37188/OPE.20223015.1857
    [19] 李寒霜, 李博, 李昊晨, 等. 基于一种透镜材料的宽谱段紫外成像仪光学设计[J]. 中国光学,2022,15(1):65-71. doi: 10.37188/CO.2021-0127

    LI H SH, LI B, LI H CH, et al. Optical design of a wide spectrum UV imager based on a lens material[J]. Chinese Optics, 2022, 15(1): 65-71. (in Chinese). doi: 10.37188/CO.2021-0127
    [20] 叶井飞, 朱润徽, 马梦聪, 等. 紫外宽光谱大相对孔径光学系统设计[J]. 应用光学,2021,42(5):761-766. doi: 10.5768/JAO202142.0501001

    YE J F, ZHU R H, MA M C, et al. Design of UV optical system with wide ultraviolet spectrum and large relative aperture[J]. Applied Optics, 2021, 42(5): 761-766. doi: 10.5768/JAO202142.0501001
    [21] FAN J Z, WANG Y W, GU G CH, et al. Development of an imaging spectrometer with a high signal-to-noise ratio based on high energy transmission efficiency for soil organic matter detection[J]. Sensors, 2024, 24(13): 4385. doi: 10.3390/s24134385
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-08-21

目录

    /

    返回文章
    返回