Review of methods to suppress the impacts of polarization properties on optical systems
-
摘要:
光学系统的偏振特性会改变入射光的偏振态,从而对成像质量、探测精度等产生影响。对于望远镜、光刻物镜等光学仪器,偏振特性是决定系统性能的重要因素之一。因此,抑制光学系统偏振特性的不利影响是实现高性能现代光学系统的关键之一。本文总结了光学系统偏振特性影响抑制方法的研究现状,并将已有方法归结为三类:偏振定标、偏振补偿和低偏振优化设计。介绍了上述三种方法的基本原理,并结合应用实例对各种方法进行了分类与讨论。最后,分析了三种方法的联系及其相互之间的协同应用,并对光学系统偏振特性影响抑制方法的未来发展进行了讨论与展望。
Abstract:The polarization properties of optical systems enable to change the polarization state of incident light, thus imaging quality and detection accuracy would be affected. For optical instruments such as telescopes and lithography lenses, polarization properties are important factors that determine the performance of these systems. Therefore, suppressing the unfavorable impacts of polarization properties on optical systems is key to achieve optical systems with good performance. This paper summarizes the current research status on methods to suppress the impacts of polarization properties on optical systems. The existing approaches are divided into three groups: polarization calibration, polarization compensation, and low polarization optimization design. The basic principles of these three methods are introduced, and the methods are classified and discussed with application examples. Finally, the relationship among the three methods and their cooperative applications is analyzed, and the future development of methods to suppress the impacts of polarization properties on optical systems is discussed.
-
图 6 POSP星上定标器布局图,其中SD是太阳漫射板,SDSM是太阳漫射板稳定性监测器,DB代表黑体,SMA为扫描镜组件,LPC是线偏振定标器,NPC指非偏振定标器[37]
Figure 6. Layout diagram of the POSP onboard calibrators, where SD is the Solar Diffuser, SDSM is the Solar Diffuser Stability Monitor, DB represents the Dark Body, SMA is the Scanning Mirrors Assembly, LPC is the Linear Polarization Calibrator and NPC refers to the Non-Polarization Calibrator[37]
图 23 光刻物镜的透射图、二向衰减图、延迟图和标量相位图。(a1)-(d1)无涂层;(a2)-(d2)涂有LPC;(a3)-(d3)提高透过率的第一次优化结果;(a4)-(d4)降低透过率的第二次优化结果[100]
Figure 23. The transmission map, diattenuation map, retardance map and scalar phase map of the lithographic lens. (a1) - (d1) No coatings; (a2) - (d2) Coated with LPC; (a3) - (d3) First optimization results for improving transmittance; (a4) - (d4) Second optimization results for reducing transmittance[100]
图 24 对铝镀膜镜和带有负C板和AR膜层的铝镀膜镜进行了比较。原始未校正值用虚线表示,而校正值用实线绘制[103]
Figure 24. Comparison between an aluminum-coated mirror and an aluminum-coated mirror with a negative C-plate and AR coating. Original uncorrected values are presented with dashes lines, while corrected values are plotted with solid lines[103]
图 25 使用少量组件补偿DUV光刻系统中的相位延迟。(a)光学系统布局;(b)<011>-0°和<011>-90°方向累积延迟的相位延迟光瞳图和总延迟值[105]
Figure 25. Compensation of the phase retardation in a DUV lithographic system with small number of components. (a) Optical system layout; (b) Phase retardation pupil maps of cumulative retardation for <011>-0° and <011>-90° directions and total retardation value[105]
图 28 偏光显微镜示意图。ILLUM:照明灯;POL:线偏振片;COND:聚光镜、OBJ:物镜;SP:样本平面;RECT:偏振整流器;COMP:延迟补偿器;AN:线偏振片;IMG:中间像面[111]
Figure 28. Schematic diagram of polarizing microscope. ILLUM: illuminator; POL: linear polarizer; COND: condenser lenses; OBJ: objective lenses; SP: specimen plane; RECT: polarization rectifier; COMP: compensating retarder; AN: linear polarizer; IMG: intermediate image[111]
图 39 两层薄膜(a)和六层薄膜(b)的透射率和透射相移。实线表示两种薄膜的透射特性,虚线表示两种薄膜引起的相移[137]
Figure 39. Transmittance and phase shift on transmission for the two-layer coating (a) and the six-layer coating (b). The solid lines represent the transmission properties of the two coatings, and the dotted ones represent the phase shifts induced by the two coatings[137]
表 1 定标光源分类
Table 1. Classification of calibration light sources
光源类型 定标光源 定标对象 人工定标光源 积分球(非偏振光) (a)起偏度[32] (b)相对透过率[21],[23],[25],[28] (c)增益比[41] 积分球+偏振片 (a)偏振器件方位角[21],[22],[23],[24],[25],[26],[27] (b)起偏度[23],[31] (c)二向衰减[59] (d)穆勒矩阵第一行前3个元素[62] 可调偏振度光源 (a)偏振度[48],[49],[50],[51],[54] (b)偏振器件方位角[28] (c)二向衰减[61] 积分球等人造光源+定标单元 穆勒矩阵[71],[72],[76],[77],[78],[80],[81],[84] 自然景物定标光源 水云(非偏振光) (a)起偏度[33],[34],[35],[36] (b)相对透过率[33],[35],[36] 太阳光 (a)增益比[39] (b)二向衰减[60] 海洋(水面)场景太阳耀光(强偏振光) (a)消光比[33] (b)偏振度[47],[56],[57],[58] 地球反照光+(线/非)偏振定标器 消光比/增益比[37] 白天天空背景光 穆勒矩阵[70] 太阳光、非偏振标准星、太阳黑子等自然偏振源+定标单元 穆勒矩阵[64],[65],[66],[67],[68],[69],[74],[75],[79], Method Field 1
Retardation
(nm)Field 2
Retardation
(nm)Field 3
Retardation
(nm)Max
Coefficients
(nm)Time
(s)Origin 4.53 4.84 5.1 3.71 - PSO 1.95 1.85 1.96 1.87 27416.78 NLS 0.89 0.9 1.28 −1.17 64.45935 表 3 四种偏振补偿方法的总结
Table 3. Summary of four polarization compensation methods
补偿方法 主要方案 优势 局限 结构补偿 1、交叉折轴镜结构;
2、反射元件与折射元件结合;1、基于光学结构设计,有较高的灵活性;
2、补偿效果较好;1、会改变光学系统结构;
2、方案1只能完美消除单点偏振像差;
3、方案2会产生色差;薄膜补偿 1、常规薄膜补偿设计;
2、双折射材料薄膜补偿;1、对光学系统的结构影响较小;
2、补偿效果较好;1、低偏振要求下的薄膜补偿设计难度大;
2、难以兼顾波像差、光学效率等指标;旋转补偿 旋转光学元件 1、不改变光学系统的结构;
2、补偿手段相对便捷;
3、不改变波像差、光学效率等指标;1、仅对含双折射光学元件的系统
具有较好的补偿效果;
2、最优旋转角度的计算难度大;偏振器件
补偿1、添加常规偏振补偿器件;
2、利用液晶等微纳手段进行调控;1、方案1相对便捷;
2、方案2的补偿精度高;1、容易对波像差、光学效率等指标产生影响;
2、系统的复杂性增加;
3、目前方案2的制造难度较大;表 4 偏振相关参数的总结
Table 4. Summary of polarization-related parameters
参数名称 定义 计算公式 备注 仪器偏振 因光学仪器导致出射光相对于入射光的偏振态变化 — — 偏振像差 光学元件/系统的偏振特性随波长、入射角和位置变化的函数 二向衰减和相位延迟是其主要表现形式,具体计算公可见下方 — 二向衰减 偏振相关的振幅变化 $D = \dfrac{{{T_{\max }} - {T_{\min }}}}{{{T_{\max }} + {T_{\min }}}}$ Tmax,Tmin分别表示最大透过率和最小透过率(最大和最小透过率对应的偏振态定义为元件的本征偏振态) 相位延迟 偏振相关的相位变化 $\delta = {\delta _{\max }} - {\delta _{\min }}$ δmax,δmin分别表示本征偏振态的相位 退偏 偏振度的随机降低,可通过退偏指数(DI)描述穆勒矩阵对入射态的退偏程度 $ DI = \dfrac{{\sqrt {\left(\displaystyle\sum\limits_{i,j} {M_{ij}^2} \right) - M_{00}^2} }}{{\sqrt 3 {M_{00}}}} $ Mij为穆勒矩阵元素 偏振串扰 由主偏振光在正交偏振方向的衍生光 — — 偏振度 以非偏振光入射时出射光的偏振化程度 $DoP = \dfrac{{\sqrt {S_1^2 + S_2^2 + S_3^2} }}{{{S_0}}} = \dfrac{{\sqrt {M_{10}^2 + M_{20}^2 + M_{30}^2} }}{{{M_{00}}}}$ Si为斯托克斯参量;Mij为穆勒矩阵元素 起偏度 光学系统产生偏振光的能力 二向衰减的一种表现形式 — 增益比 不同偏振探测通道增益系数的差异,包含了光学和电子学的综合效应 $G = \dfrac{{{I_2}}}{{{I_1}}}$ I1,I2表示不同偏振通道的探测器响应 相对透过率 描述了同一波段、不同偏振通道的光学透过率差异 $T = \dfrac{{{T_2}}}{{{T_1}}}$ T1,T2表示不同偏振通道的透过率 消光比 偏振光学元件最大透过率Tmax与最小透过率Tmin之比,是衡量偏振片性能的关键指标 $E = \dfrac{{{T_{\max }}}}{{{T_{\min }}}}$ 对于理想的偏振片E=∞ 退偏比 大气后向散射系数的垂直与平行分量之比 $\rho = \dfrac{{{\beta _ \bot }}}{{{\beta _\parallel }}}$ 适用偏振激光雷达领域 -
[1] 梁铨廷. 物理光学-修订本[M]. 北京: 机械工业出版社, 1987.LIANG Q T. Physical Optics - Revised Edition[M]. Beijing: China Machine Press, 1987. (in Chinese) (查阅网上资料, 未找到对应的英文翻译信息, 请确认). [2] DINER D J, XU F, MARTONCHIK J V, et al. Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle spectropolarimetric imager[J]. Atmosphere, 2012, 3(4): 591-619. doi: 10.3390/atmos3040591 [3] CHIPMAN R A, LAM W S T, BRECKINRIDGE J. Polarization aberration in astronomical telescopes[J]. Proceedings of SPIE, 2015, 9613: 96130H. [4] CHIPMAN R A. Challenges in coronagraph optical design[J]. Proceedings of SPIE, 2017, 10374: 1037403. [5] SHEN L N, LI S K, WANG X ZH, et al. Analytical analysis of the impact of polarization aberration of projection lens on lithographic imaging[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2015, 14(4): 043504. doi: 10.1117/1.JMM.14.4.043504 [6] 贺文俊, 贾文涛, 冯文田, 等. 深紫外光刻投影物镜的三维偏振像差[J]. 红外与激光工程,2018,47(8):0818006. doi: 10.3788/IRLA201847.0818006HE W J, JIA W T, FENG W T, et al. Three-dimensional polarization aberration of deep ultraviolet lithographic projection lens[J]. Infrared and Laser Engineering, 2018, 47(8): 0818006. (in Chinese). doi: 10.3788/IRLA201847.0818006 [7] 李淑军, 姜会林, 朱京平, 等. 偏振成像探测技术发展现状及关键技术[J]. 中国光学,2013,6(6):803-809.LI SH J, JIANG H L, ZHU J P, et al. Development status and key technologies of polarization imaging detection[J]. Chinese Optics, 2013, 6(6): 803-809. (in Chinese). [8] 高铭, 赵光恒, 顾逸东. 我国空间站的空间科学与应用任务[J]. 中国科学院院刊,2015,30(6):721-732.GAO M, ZHAO G H, GU Y D. Space science and application mission in China’s space station[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(6): 721-732. (in Chinese). [9] 张伟. 天宫-2空间科学与应用任务及进展[J]. 国际太空,2016(12):18-23.ZHANG W. Progress of Tiangong-2 space science and application mission[J]. Space International, 2016(12): 18-23. (in Chinese). [10] 邓元勇, 甘为群, 颜毅华, 等. 太阳磁场探测现状与展望[J]. 红外与激光工程,2020,49(11):20200278. doi: 10.3788/IRLA20200278DENG Y Y, GAN W Q, YAN Y H, et al. Current situation and prospect of solar magnetic field exploration[J]. Infrared and Laser Engineering, 2020, 49(11): 20200278. (in Chinese). doi: 10.3788/IRLA20200278 [11] 刘忠, 邓元勇, 杨德华, 等. 中国巨型太阳望远镜[J]. 中国科学: 物理学 力学 天文学,2019,49(5):35-43.LIU ZH, DENG Y Y, YANG D H, et al. Chinese giant solar telescope[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(5): 35-43. (in Chinese). [12] BRECKINRIDGE J B, KUPINSKI M, DAVIS J, et al. Terrestrial exoplanet coronagraph image quality polarization aberrations in Habex[J]. Proceedings of SPIE, 2018, 10698: 106981D. [13] WILL S D, FIENUP J R. Understanding polarization aberrations in the LUVOIR coronagraph instrument[C]. Frontiers in Optics, Optica Publishing Group, 2019. [14] JENNRICH O. LISA technology and instrumentation[J]. Classical and Quantum Gravity, 2009, 26(15): 153001. doi: 10.1088/0264-9381/26/15/153001 [15] LUO J, HE X, FAN K, et al. Effects of polarization aberrations in an unobscured off-axis space telescope on its PSF ellipticity[J]. Optics Express, 2020, 28(25): 37958-37970. doi: 10.1364/OE.412413 [16] JIA Y, LI Y Q, LIU L H, et al. A method for compensating the polarization aberration of projection optics in immersion lithography[J]. Proceedings of SPIE, 2014, 9283: 928309. [17] 郭红, 顾行发, 谢东海, 等. 大气气溶胶偏振遥感研究进展[J]. 光谱学与光谱分析,2014,34(7):1873-1880. doi: 10.3964/j.issn.1000-0593(2014)07-1873-08GUO H, GU X F, XIE D H, et al. A review of atmospheric aerosol research by using polarization remote sensing[J]. Spectroscopy and Spectral Analysis, 2014, 34(7): 1873-1880. (in Chinese). doi: 10.3964/j.issn.1000-0593(2014)07-1873-08 [18] 路小梅, 江月松, 饶文辉. 激光雷达偏振成像遥感的望远镜系统偏振分析[J]. 光学学报,2007,27(10):1771-1774. doi: 10.3321/j.issn:0253-2239.2007.10.009LU X M, JIANG Y S, RAO W H. Polarization analysis of the Cassegrain telescope used for the lidar polarization active imaging system[J]. Acta Optica Sinica, 2007, 27(10): 1771-1774. (in Chinese). doi: 10.3321/j.issn:0253-2239.2007.10.009 [19] 杨宇飞, 颜昌翔, 胡春晖, 等. 相干激光通信光学系统偏振像差研究[J]. 光学学报,2016,36(11):1106003. doi: 10.3788/AOS201636.1106003YANG Y F, YAN CH X, HU CH H, et al. Polarization aberration analysis of coherent laser communication system[J]. Acta Optica Sinica, 2016, 36(11): 1106003. (in Chinese). doi: 10.3788/AOS201636.1106003 [20] HARRINGTON D M, SUEOKA S R. Polarization modeling and predictions for Daniel K. Inouye solar telescope part 4: calibration accuracy over field of view, retardance spatial uniformity, and achromat design sensitivity[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2018, 4(4): 044006. [21] 陈立刚. 大视场偏振CCD相机的偏振特性实验标定[J]. 光电工程,2015,42(2):15-20. doi: 10.3969/j.issn.1003-501X.2015.02.003CHEN L G. Polarimetric calibration of the polarization CCD camera with large viewing field[J]. Opto-Electronic Engineering, 2015, 42(2): 15-20. (in Chinese). doi: 10.3969/j.issn.1003-501X.2015.02.003 [22] 范慧敏, 康晴, 裘桢炜, 等. 多光谱分孔径同时探测系统偏振定标方法[J]. 光学学报,2017,37(2):283-291.FAN H M, KANG Q, QIU ZH W, et al. Polarization calibration for multi-spectral aperture-divided simultaneous detection system[J]. Acta Optica Sinica, 2017, 37(2): 283-291. (in Chinese). [23] HUANG CH, XIANG G F, CHANG Y Y, et al. Pre-flight calibration of a multi-angle polarimetric satellite sensor directional polarimetric camera[J]. Optics Express, 2020, 28(9): 13187-13215. doi: 10.1364/OE.391078 [24] LI SH, WANG R, CHENG J M, et al. Skylight VIS-NIR polarization radiometer: design, calibration, and measurement[J]. IEEE Sensors Journal, 2024, 24(6): 7700-7710. doi: 10.1109/JSEN.2024.3360241 [25] BRET-DIBAT T, ANDRE Y, LAHERRERE J M. Preflight calibration of the POLDER instrument[J]. Proceedings of SPIE, 1995, 2553: 218-231. doi: 10.1117/12.221357 [26] 黄文娟, 崔文煜, 易维宁, 等. 多光谱偏振大气探测系统定标处理[J]. 大气与环境光学学报,2015,10(4):350-356.HUANG W J, CUI W Y, YI W N, et al. Calibration processing for multi-spectral polarimetric atmospheric detection system[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(4): 350-356. (in Chinese). [27] WANG H F, ZHANG P, YIN D K, et al. Preflight calibration of short-wave infrared polarization and multiangle imager onboard Fengyun-3 satellite[J]. Remote Sensing, 2024, 62: 5610612. [28] 康晴, 袁银麟, 李健军, 等. 通道式偏振遥感器偏振定标方法研究[J]. 大气与环境光学学报,2015,10(4):343-349.KANG Q, YUAN Y L, LI J J, et al. Polarization calibration methods of channel-type polarization remote sensor[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(4): 343-349. (in Chinese). [29] FAN CH, HU X P, LIAN J X, et al. Design and calibration of a novel camera-based bio-inspired polarization navigation sensor[J]. IEEE Sensors Journal, 2016, 16(10): 3640-3648. doi: 10.1109/JSEN.2016.2533628 [30] 陈兴峰, 刘李, 葛曙乐, 等. 大视场偏振多光谱相机的在轨辐射定标研究进展[J]. 光谱学与光谱分析,2020,40(2):343-349.CHEN X F, LIU L, GE SH L, et al. Research progress for in-flight calibration of the large view polarized multispectral camera[J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 343-349. (in Chinese). [31] YUAN Y L, LIU ZH, ZHENG X B, et al. Polarimetric calibration of the spaceborne directional polarimetric camera installed on the GF-5 satellite[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 43: 599-606. (查阅网上资料, 卷期信息不确定, 请确认). [32] 杨斌, 颜昌翔, 张军强, 等. 多通道型偏振成像仪的偏振定标[J]. 光学 精密工程,2017,25(5):1126-1134. doi: 10.3788/OPE.20172505.1126YANG B, YAN CH X, ZHANG J Q, et al. Polarimetric calibration of multi-channel polarimetric imager[J]. Optics and Precision Engineering, 2017, 25(5): 1126-1134. (in Chinese). doi: 10.3788/OPE.20172505.1126 [33] GOLOUB P, TOUBBE B, HERMAN M, et al. In-flight polarization calibration of POLDER[J]. Proceedings of SPIE, 1997, 2957: 299-310. doi: 10.1117/12.265444 [34] FOUGNIE B, BRACCO G, LAFRANCE B, et al. PARASOL in-flight calibration and performance[J]. Applied Optics, 2007, 46(22): 5435-5451. doi: 10.1364/AO.46.005435 [35] 张一鹏, 胡秀清, 殷德奎, 等. 多角度偏振成像仪全像面在轨偏振定标方法[J]. 光学学报,2020,40(19):1911001. doi: 10.3788/AOS202040.1911001ZHANG Y P, HU X Q, YIN D K, et al. Full image on-orbit polarization calibration method of multi-angle polarization imager[J]. Acta Optica Sinica, 2020, 40(19): 1911001. (in Chinese). doi: 10.3788/AOS202040.1911001 [36] 顾行发, 陈兴峰, 程天海, 等. 多角度偏振遥感相机DPC在轨偏振定标[J]. 物理学报,2011,60(7):070702. doi: 10.7498/aps.60.070702GU X F, CHEN X F, CHEN T H, et al. In-flight polarization calibration methods of directional polarized remote sensing camera DPC[J]. Acta Physica Sinica, 2011, 60(7): 070702. (in Chinese). doi: 10.7498/aps.60.070702 [37] 杨洪春, 杨本永, 宋茂新, 等. 星载偏振扫描仪的星上偏振定标方法[J]. 中国激光,2018,45(11):1110002. doi: 10.3788/CJL201845.1110002YANG H CH, YANG B Y, SONG M X, et al. Onboard polarimetric calibration methods of spaceborne scanning polarimeter[J]. Chinese Journal of Lasers, 2018, 45(11): 1110002. (in Chinese). doi: 10.3788/CJL201845.1110002 [38] 童奕澄, 童学东, 张凯, 等. 偏振激光雷达增益比定标方法对比研究[J]. 中国光学,2021,14(3):685-703. doi: 10.37188/CO.2020-0136TONG Y CH, TONG X D, ZHANG K, et al. Polarization lidar gain ratio calibration method: a comparison[J]. Chinese Optics, 2021, 14(3): 685-703. (in Chinese). doi: 10.37188/CO.2020-0136 [39] CAIRNS B, RUSSELL E E, TRAVIS L D. Research scanning polarimeter: Calibration and ground-based measurements[J]. Proceedings of SPIE, 1999, 3754: 186-196. doi: 10.1117/12.366329 [40] MATTIS I, TESCHE M, GREIN M, et al. Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: quantification and error correction scheme[J]. Applied Optics, 2009, 48(14): 2742-2751. doi: 10.1364/AO.48.002742 [41] 宋茂新, 孙斌, 孙晓兵, 等. 航空多角度偏振辐射计的偏振定标[J]. 光学 精密工程,2012,20(6):1153-1158. doi: 10.3788/OPE.20122006.1153SONG M X, SUN B, SUN X B, et al. Polarization calibration of airborne muti-angle polarimetric radiometer[J]. Optics and Precision Engineering, 2012, 20(6): 1153-1158. (in Chinese). doi: 10.3788/OPE.20122006.1153 [42] 罗敬. 高精度偏振激光雷达关键技术及系统研究[D]. 杭州: 浙江大学, 2018.LUO J. Research on key technologies and system of high-precision polarization lidar[D]. Hangzhou: Zhejiang University, 2019. (in Chinese). [43] BEHRENTD A, NAKAMURA T. Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature[J]. Optics Express, 2002, 10(16): 805-817. doi: 10.1364/OE.10.000805 [44] ALVAREZ J M, VAUGHAN M A, HOSTETLER C A, et al. Calibration technique for polarization-sensitive lidars[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(5): 683-699. doi: 10.1175/JTECH1872.1 [45] FREUDENTHALER V, ESSELBORN M, WIEGNER M, et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006[J]. Tellus B: Chemical and Physical Meteorology, 2009, 61(1): 165-179. doi: 10.1111/j.1600-0889.2008.00396.x [46] LUO J, LIU D, BI L, et al. Rotating a half-wave plate by 45°: an ideal calibration method for the gain ratio in polarization lidars[J]. Optics Communications, 2018, 407: 361-366. doi: 10.1016/j.optcom.2017.09.065 [47] LI ZH Q, BLAREL L, PODVIN T, et al. Calibration of the degree of linear polarization measurement of polarized radiometer using solar light[J]. Applied Optics, 2010, 49(8): 1249-1256. doi: 10.1364/AO.49.001249 [48] LI ZH Q, LI K T, LI L, et al. Calibration of the degree of linear polarization measurements of the polarized sun-sky radiometer based on the POLBOX system[J]. Applied Optics, 2018, 57(5): 1011-1018. doi: 10.1364/AO.57.001011 [49] 曾献芳, 贾镕, 王孙晨, 等. 紫外偏振成像系统定标实验方法研究[J]. 大气与环境光学学报,2021,16(2):138-148.ZENG X F, JIA R, WANG S CH, et al. Research on calibration method of uv polarization imaging system[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(2): 138-148. (in Chinese). [50] LIANG T Q, TANG Q X, YU Q ZH. Study on the calibration of full polarization imager[J]. Heliyon, 2023, 9(8): e18454. doi: 10.1016/j.heliyon.2023.e18454 [51] 张晨, 宋志平, 操宁, 等. 基于可调偏振度源的PSIM偏振光谱仪线偏振度测量结果定标校正[J]. 光学技术,2022,48(1):34-37. doi: 10.3321/j.issn.1002-1582.2022.1.gxjs202201006ZHANG C, SONG Z P, CAO N, et al. Calibration and correction of linear polarization measurement results of PSIM spectro-polarimeter based on adjustable polarization source[J]. Optical Technique, 2022, 48(1): 34-37. (in Chinese). doi: 10.3321/j.issn.1002-1582.2022.1.gxjs202201006 [52] 康晴, 李健军, 陈立刚, 等. 大动态范围可调线性偏振度参考光源检测与不确定度分析[J]. 光学学报,2015,35(4):0412003. doi: 10.3788/AOS201535.0412003KANG Q, LI J J, CHEN L G, et al. Test and uncertainty analysis of reference source with variable polarization degree and large dynamic range[J]. Acta Optica Sinica, 2015, 35(4): 0412003. (in Chinese). doi: 10.3788/AOS201535.0412003 [53] 康晴. 大动态范围可调偏振度参考光源的研制与检测[D]. 合肥: 安徽大学, 2015.KANG Q. Design and test of variable polarization light source with large dynamic range[D]. Hefei: Anhui University, 2015. (in Chinese). [54] 胡劲松, 宋志平, 李志伟, 等. 基于PSIM的偏振光谱仪集成实验样机[J]. 大气与环境光学学报,2019,14(5):393-400.HU J S, SONG ZH P, Li ZH W, et al. Integrated experimental prototype of spectropolarimeter based on PSIM[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(5): 393-400. (in Chinese). [55] MASUDA K, SASAKI M. A multi-spectral polarimeter for measurements of direct solar and diffused sky radiation: Calibration and measurements[J]. Optical Review, 1997, 4(4): 496-501. doi: 10.1007/s10043-997-0496-0 [56] TOUBBÉ B, BAILLEUL T, DEUZÉ J L, et al. In-flight calibration of the POLDER polarized channels using the sun's glitter[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 513-525. doi: 10.1109/36.739104 [57] 张一鹏, 胡秀清, 殷德奎, 等. 基于海洋耀斑的多角度偏振成像仪在轨偏振定标技术[J]. 光学学报,2020,40(15):1528002. doi: 10.3788/AOS202040.1528002ZHANG Y P, HU X Q, YIN D K, et al. Onboard polarization calibration technique of multi-angle polarization imager based on sun glint from ocean[J]. Acta Optica Sinica, 2020, 40(15): 1528002. (in Chinese). doi: 10.3788/AOS202040.1528002 [58] QIE L L, LI ZH Q, ZHU S F, et al. In-flight radiometric and polarimetric calibration of the Directional Polarimetric Camera onboard the GaoFen-5 satellite over the ocean[J]. Applied Optics, 2021, 60(24): 7186-7199. doi: 10.1364/AO.422980 [59] LI Y, ZHANG H Y, LIU W, et al. Polarization radiometric calibration method for multichannel polarization camera[J]. Optik, 2018, 172: 980-987. doi: 10.1016/j.ijleo.2018.07.083 [60] LIU M X, ZHANG X, LIU T, et al. On-orbit polarization calibration for multichannel polarimetric camera[J]. Applied Sciences, 2019, 9(7): 1424. doi: 10.3390/app9071424 [61] GROB H, EMDE C, WIEGNER M, et al. The polarized sun and sky radiometer SSARA: design, calibration, and application for ground-based aerosol remote sensing[J]. Atmospheric Measurement Techniques, 2020, 13(1): 239-258. doi: 10.5194/amt-13-239-2020 [62] GUAN CH L, ZHANG R, CHU J K, et al. Integrated real-time polarization image sensor based on UV-NIL and calibration method[J]. IEEE Sensors Journal, 2022, 22(4): 3157-3163. doi: 10.1109/JSEN.2022.3141049 [63] ZHU SH SH, JIN SH L, SHU Y X, et al. Polarization calibration method for simultaneous imaging polarization camera[J]. Proceedings of SPIE, 2022, 12557: 125570D. [64] ICHIMOTO K, LITES B, ELMORE D, et al. Polarization calibration of the solar optical telescope onboard Hinode[J]. Solar Physics, 2008, 249(2): 233-261. doi: 10.1007/s11207-008-9169-9 [65] HOFMANN A, ARLT K, BALTHASAR H, et al. The GREGOR polarimetric calibration unit[J]. Astronomische Nachrichten, 2012, 333(9): 854-862. doi: 10.1002/asna.201211733 [66] HOU J F, WANG D G, DENG Y Y, et al. Error analysis and optimal design of polarization calibration unit for solar telescope[J]. Chinese Physics B, 2017, 26(8): 089501. doi: 10.1088/1674-1056/26/8/089501 [67] HOU J F, XU ZH, YUAN SH, et al. Spectro-polarimetric observations at the NVST: I. Instrumental polarization calibration and primary measurements[J]. Research in Astronomy and Astrophysics, 2020, 20(4): 45. doi: 10.1088/1674-4527/20/4/45 [68] SOCAS-NAVARRO H. Polarimetric calibration of large-aperture telescopes. I. Beam-expansion method[J]. Journal of the Optical Society of America A, 2005, 22(3): 539-545. doi: 10.1364/JOSAA.22.000539 [69] SOCAS-NAVARRO H. Polarimetric calibration of large-aperture telescopes. II. Subaperture method[J]. Journal of the Optical Society of America A, 2005, 22(5): 907-912. doi: 10.1364/JOSAA.22.000907 [70] HARRINGTON D M, KUHN J R, HALL S. Deriving telescope Mueller matrices using daytime sky polarization observations[J]. Publications of the Astronomical Society of the Pacific, 2011, 123(905): 799-811. doi: 10.1086/660894 [71] KRISHNAN S. Calibration, properties, and applications of the division-of-amplitude photopolarimeter at 632.8 and 1523 nm[J]. Journal of the Optical Society of America A, 1992, 9(9): 1615-1622. doi: 10.1364/JOSAA.9.001615 [72] 王勇辉, 郑春龙, 赵振堂. 基于斯托克斯椭偏测量系统的多点定标法[J]. 中国激光,2012,39(11):1108013. doi: 10.3788/CJL201239.1108013WANG Y H, ZHENG CH L, ZHAO ZH T. Multi-point calibration method based on stokes ellipsometry system[J]. Chinese Journal of Lasers, 2012, 39(11): 1108013. (in Chinese). doi: 10.3788/CJL201239.1108013 [73] 张勇, 黄佐华, 赵振堂, 等. 斯托克斯椭偏仪仪器矩阵在位定标方法[J]. 光学学报,2013,33(2):0212002. doi: 10.3788/AOS201333.0212002ZHANG Y, HUANG Z H, ZHAO ZH T, et al. In-place calibration of stokes ellipsometer's instrument matrix[J]. Acta Optica Sinica, 2013, 33(2): 0212002. (in Chinese). doi: 10.3788/AOS201333.0212002 [74] 王国聪, 常伟军, 胡博. 低轨空间目标地基偏振成像系统偏振定标方法[J]. 应用光学,2017,38(6):896-902.WANG G C, CHANG W J, HU B. Polarization calibration method of ground-based polarization imaging system for low earth orbit space objects[J]. Journal of Applied Optics, 2017, 38(6): 896-902. (in Chinese). [75] 邱鹏, 王国聪, 张晓明, 等. 2.16m望远镜偏振光度计[J]. 红外与激光工程,2023,52(7):20220830.QIU P, WANG G C, ZHANG X M, et al. The 2. 16-m telescope polarimeter[J]. Infrared and Laser Engineering, 2023, 52(7): 20220830. (in Chinese). [76] 韩子健, 任德清. 成像偏振仪的二次校准方法[J]. 光学学报,2021,41(24):2411001.HAN Z J, REN D Q. Double-calibration method of imaging polarimeters[J]. Acta Optica Sinica, 2021, 41(24): 2411001. (in Chinese). [77] 陶菲, 宋茂新, 洪津, 等. 基于离轴三反的同时全偏振成像仪的偏振定标方法[J]. 光学学报,2018,38(9):0912005. doi: 10.3788/AOS201838.0912005TAO F, SONG M X, HONG J, et al. Polarization calibration method for simultaneous imaging polarimeter based on off-axis three-mirror[J]. Acta Optica Sinica, 2018, 38(9): 0912005. (in Chinese). doi: 10.3788/AOS201838.0912005 [78] WOOD T C, KOH K R, ELSON D S, et al. Challenges in multimodal (fluorescence, reflectance, polarisation) tissue imaging using rigid endoscopes[C]. IEEE Photonics Society Winter Topicals Meeting Series, IEEE, 2010: 81-82. [79] 姚本溪, 饶长辉, 顾乃庭. 1.8m太阳望远镜偏振标定单元设计[J]. 光电工程,2018,45(11):180058.YAO B X, RAO CH H, GU N T. Polarization calibration unit design of 1. 8m Chinese large solar telescope[J]. Opto-Electronic Engineering, 2018, 45(11): 180058. (in Chinese). [80] AZZAM R M A, MASETTI E, ELMINYAWI I M, et al. Construction, calibration, and testing of a four-detector photopolarimeter[J]. Review of Scientific Instruments, 1988, 59(1): 84-88. doi: 10.1063/1.1139971 [81] AZZAM R M A, LOPEZ A G. Accurate calibration of the four-detector photopolarimeter with imperfect polarizing optical elements[J]. Journal of the Optical Society of America A, 1989, 6(10): 1513-1521. doi: 10.1364/JOSAA.6.001513 [82] GOLDSTEIN D H. Polarized Light[M]. 3rd ed. Boca Raton: CRC Press, 2011. [83] SNIK F. Calibration strategies for instrumental polarization at the 10−5 level[J]. Proceedings of SPIE, 2006, 6269: 62695P. doi: 10.1117/12.671425 [84] 侯俊峰, 王东光, 邓元勇, 等. 斯托克斯椭偏仪的非线性最小二乘拟合偏振定标[J]. 光学 精密工程,2013,21(8):1915-1922. doi: 10.3788/OPE.20132108.1915HOU J F, WANG D G, DENG Y Y, et al. Nonlinear least-square fitting polarization calibration of stokes ellipsometer[J]. Optics and Precision Engineering, 2013, 21(8): 1915-1922. (in Chinese). doi: 10.3788/OPE.20132108.1915 [85] LI D T, DAI H. Characteristic and compensation research on polarization effect from the front optical system of imaging polarimeters[J]. Optik, 2019, 193: 162977. doi: 10.1016/j.ijleo.2019.162977 [86] 周泽龙. 投影光刻物镜偏振像差研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018.ZHOU Z L. Study on the polarization aberrations of projection lithography lens[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, University of Chinese Academy of Sciences, 2018. (in Chinese). [87] COX L J. The compensation of instrumental polarization by inclined mirrors[J]. Monthly Notices of the Royal Astronomical Society, 1976, 176(3): 525-532. doi: 10.1093/mnras/176.3.525 [88] ALMEIDA J S, PILLET V M, WITTMANN A D. The instrumental polarization of a Gregory-Coudé telescope[J]. Solar Physics, 1991, 134(1): 1-13. doi: 10.1007/BF00148738 [89] LAM W S T, CHIPMAN R. Balancing polarization aberrations in crossed fold mirrors[J]. Applied Optics, 2015, 54(11): 3236-3245. doi: 10.1364/AO.54.003236 [90] BANERJEE S, CHIPMAN R, HAGEN N, et al. Effect of oxide layer thickness on polarization mitigation[J]. Proceedings of SPIE, 2019, 11142: 80-82. (查阅网上资料, 未找到本条文献信息, 请确认). [91] BANERJEE S, CHIPMAN R, OTANI Y. Simultaneous balancing of geometric transformation and linear polarizations using six-fold-mirror geometry over the visible region[J]. Optics Letters, 2020, 45(9): 2510-2513. doi: 10.1364/OL.390026 [92] YUN G, CRABTREE K, CHIPMAN R A. Skew aberration: a form of polarization aberration[J]. Optics Letters, 2011, 36(20): 4062-4064. doi: 10.1364/OL.36.004062 [93] YAO B X, GU N T, RAO C H. Optical compensation of the Chinese Large Solar Telescope instrumental polarization[J]. Journal of Optical Technology, 2018, 85(10): 639-643. doi: 10.1364/JOT.85.000639 [94] 付玉, 袁沭, 金振宇, 等. 8m中国巨型太阳望远镜偏振光学设计[J]. 天文学报,2023,64(1):8.FU Y, YUAN SH, JIN ZH Y, et al. Polarization optical design of 8-meter Chinese Giant Solar Telescope[J]. Acta Astronomica Sinica, 2023, 64(1): 8. (in Chinese). [95] HOU J F, LIANG M, WANG D G, et al. Design and analysis of a five-mirror derotator with minimal instrumental polarization in astronomical telescopes[J]. Optics Express, 2018, 26(15): 19356-19370. doi: 10.1364/OE.26.019356 [96] JIANG CH M, YAO D, MENG L T, et al. Suppressing the polarization aberrations by combining reflection and refraction optical groups[J]. Optics Express, 2022, 30(23): 41847-41861. doi: 10.1364/OE.472316 [97] BALASUBRAMANIAN K, HOPPE D J, MOUROULIS P Z, et al. Polarization compensating protective coatings for TPF-Coronagraph optics to control contrast degrading cross polarization leakage[J]. Proceedings of SPIE, 2005, 5905: 59050H. [98] MAHLER A B, RAOUF N A, SMITH P K, et al. Minimizing instrumental polarization in the Multiangle SpectroPolarmetric Imager (MSPI) using diattenuation balancing between the three mirror coatings[J]. Proceedings of SPIE, 2008, 7013: 701355. doi: 10.1117/12.791941 [99] 蔡清元, 蒋林, 李耀鹏, 等. 光学薄膜与系统的偏振控制[J]. 红外,2018,39(12):1-7. doi: 10.3969/j.issn.1672-8785.2018.12.001CAI Q Y, JIANG L, LI Y P, et al. Polarization control of optical films and systems[J]. Infrared, 2018, 39(12): 1-7. (in Chinese). doi: 10.3969/j.issn.1672-8785.2018.12.001 [100] JIA W T, HE W J, LI Y H, et al. Design and collaborative optimization method of multilayer coatings to correct polarization aberration of optical systems[J]. Optics Express, 2022, 30(17): 30611-30622. doi: 10.1364/OE.464633 [101] SABATKE D, KNIGHT J S, BOLCAR M R. Polarization ray tracing and polarization aberration compensation in reflective astronomical telescopes[J]. Proceedings of SPIE, 2018, 10743: 1074307. [102] HONG J. Precision compensation for polarization anisotropies in metal reflectors[J]. Optical Engineering, 2004, 43(6): 1276-1277. doi: 10.1117/1.1695565 [103] MILLER S, JIANG L A, PAU S. Birefringent coating to remove polarization aberrations[J]. Optics Express, 2022, 30(12): 20629-20646. doi: 10.1364/OE.458859 [104] MATSUYAMA T, SHIBAZAKI Y, OHMURA Y, et al. High-NA and low-residual-aberration projection lens for DUV scanner[J]. Proceedings of SPIE, 2002, 4691: 687-695. doi: 10.1117/12.474617 [105] SEREBRIAKOV A, BOCIORT F, BRAAT J. Correction of the phase retardation caused by intrinsic birefringence in deep UV lithography[J]. Proceedings of SPIE, 2005, 5754: 1780-1791. [106] SEREBRIAKOV A, MAKSIMOV E, BOCIORT F, et al. Birefringence induced by the spatial dispersion in deep UV lithography: theory and advanced compensation strategy[J]. Optical Review, 2005, 12(2): 140-145. doi: 10.1007/s10043-004-0140-1 [107] ZHOU Z L, SHANG H B, SUI Y X, et al. Useful way to compensate for intrinsic birefringence caused by calcium fluoride in optical lithography systems[J]. Chinese Optics Letters, 2018, 16(3): 032201. doi: 10.3788/COL201816.032201 [108] SHANG H B, ZHANG L W, LIU CH L, et al. Optimization based on sensitivity for material birefringence in projection lens[J]. Chinese Optics Letters, 2020, 18(6): 062201. doi: 10.3788/COL202018.062201 [109] 尚红波. 浸没光刻投影物镜光学设计与像差补偿研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.SHANG H B. Study on the optical design and aberration compensation of immersion lithography lens[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, University of Chinese Academy of Sciences, 2021. (in Chinese). [110] INOUÉ S, HYDE W L. Studies on depolarization of light at microscope lens surfaces: II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope[J]. The Journal of Biophysical and Biochemical Cytology, 1957, 3(6): 831-838. doi: 10.1083/jcb.3.6.831 [111] HANSEN E W. Overcoming polarization aberrations in microscopy[J]. Proceedings of SPIE, 1988, 0891: 190-203. doi: 10.1117/12.944306 [112] SHRIBAK M I, INOUÉ S, OLDENBOURG R. Polarization aberrations caused by differential transmission and phase shift in high numerical aperture lenses: theory, measurement, and retification[J]. Optical Engineering, 2002, 41(5): 943-954. doi: 10.1117/1.1467669 [113] SHRIBAK M I, INOUÉ S, OLDENBOURG R. Rectifiers for suppressing depolarization caused by differential transmission and phase shift in high NA lenses[J]. Proceedings of SPIE, 2002, 4481: 163-174. doi: 10.1117/12.452885 [114] CLARK N, BRECKINRIDGE J B. Polarization compensation of Fresnel aberrations in telescopes[J]. Proceedings of SPIE, 2011, 8146: 81460O. doi: 10.1117/12.896638 [115] DAVIS J M. Polarization aberrations in coronagraphs[D]. Arizona: University of Arizona, 2019. [116] DAI Y Y, HE CH, WANG J Y, et al. Active compensation of extrinsic polarization errors using adaptive optics[J]. Optics Express, 2019, 27(24): 35797-35810. doi: 10.1364/OE.27.035797 [117] DAI Y Y, HE CH, WANG J Y, et al. Adaptive measurement and correction of polarization aberrations[J]. Proceedings of SPIE, 2019, 10886: 1088609. [118] HU Q, HE CH, BOOTH M J. Arbitrary complex retarders using a sequence of spatial light modulators as the basis for adaptive polarisation compensation[J]. Journal of Optics, 2021, 23(6): 065602. doi: 10.1088/2040-8986/abed33 [119] HE CH, ANTONELLO J, BOOTH M J. Vectorial adaptive optics[J]. eLight, 2023, 3(1): 23. doi: 10.1186/s43593-023-00056-0 [120] 许丽佳, 郑宇晗, 郭迎辉, 等. 超构表面偏振调控最新研究进展(特邀)[J]. 光学学报,2024,44(10):1026012. doi: 10.3788/AOS240480XU L J, ZHENG Y H, GUO Y H, et al. Recent advances in polarization manipulation of metasurfaces (invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026012. (in Chinese). doi: 10.3788/AOS240480 [121] WANG K K, FU Q, SHI H D, et al. Polarization aberration analysis and suppression of an infrared remote sensing optical system based on a digital micro-mirror device[J]. Infrared Physics & Technology, 2024, 137: 105032. [122] 王凯凯, 王超, 史浩东, 等. 含数字微镜器件的离轴光学系统偏振像差分析及补偿[J]. 光学学报,2022,42(16):93-103.WANG K K, WANG CH, SHI H D, et al. Polarization aberration analysis and compensation of off-axis optical system with digital micro-mirror device[J]. Acta Optica Sinica, 2022, 42(16): 93-103. (in Chinese). [123] ARAI T, YAMADA A, MORI K, et al. Optimization procedure of exposure tools with polarization aberrations[J]. Proceedings of SPIE, 2008, 6924: 69241I. doi: 10.1117/12.771962 [124] 涂远莹, 王向朝. 一种基于线性模型的光刻投影物镜偏振像差补偿方法[J]. 光学学报,2013,33(6):0622002. doi: 10.3788/AOS201333.0622002TU Y Y, WANG X CH. Polarization aberration compensation method for lithographic projection lens based on a linear model[J]. Acta Optica Sinica, 2013, 33(6): 0622002. (in Chinese). doi: 10.3788/AOS201333.0622002 [125] ZHANG Y, LI L, ZHAO H J. Polarization aberrations caused by fold mirrors in optical systems[J]. Proceedings of SPIE, 2007, 6624: 66240Y. doi: 10.1117/12.791098 [126] LUO J, XU T X, HE X, et al. Low polarization on-axis three-mirror reflective optical systems initial configuration designed by genetic algorithms[J]. Optics Communications, 2023, 528: 129053. doi: 10.1016/j.optcom.2022.129053 [127] LUO J, XU T X, YOU CH X, et al. Design of low polarization off-axis three-mirror reflective optical systems[J]. Optics Express, 2023, 31(21): 34477-34492. doi: 10.1364/OE.500651 [128] WANG K K, FU Q, WANG B SH, et al. Simplified analysis and suppression of polarization aberration in planar symmetric optical systems[J]. Optics Express, 2023, 31(19): 30750-30766. doi: 10.1364/OE.498455 [129] SHI H D, FAN R H, HE CH F, et al. Deep learning for polarization optical system automated design[J]. Photonics, 2024, 11(2): 164. doi: 10.3390/photonics11020164 [130] 何春风. 基于深度学习的偏振光学系统自动优化设计研究[D]. 长春: 长春理工大学, 2023.HE CH F. Research on automatic optimization design of polarization optical system based on deep learning[D]. Changchun: Changchun University of Science and Technology, 2023. (in Chinese). [131] 张艺蓝, 史浩东, 王超, 等. 离轴自由曲面光学系统偏振像差特性研究[J]. 光学学报,2021,41(18):1822002. doi: 10.3788/AOS202141.1822002ZHANG Y L, SHI H D, WANG CH, et al. Research on polarization aberration characteristics of off-axis freeform surface optical system[J]. Acta Optica Sinica, 2021, 41(18): 1822002. (in Chinese). doi: 10.3788/AOS202141.1822002 [132] 袁沭, 姜爱民. 仪器偏振对空间干涉仪高对比度成像的影响[J]. 中国空间科学技术,2023,43(6):43-50.YUAN SH, JIANG A M. Effect of instrumental polarization on high contrast imaging of space interferometer[J]. Chinese Space Science and Technology, 2023, 43(6): 43-50. (in Chinese). [133] AZZAM R M A, HOWLADER M M K. Fourth- and sixth-order polarization aberrations of antireflection-coated optical surfaces[J]. Optics Letters, 2001, 26(20): 1607-1608. doi: 10.1364/OL.26.001607 [134] SOKOLOV A L. Calculation of polarization aberrations by the method of polarization-wave matrices[J]. Optics and Spectroscopy, 2007, 103(4): 640-645. doi: 10.1134/S0030400X07100177 [135] SOKOLOV A L. Matrix method for calculating polarization aberrations[J]. Journal of Optical Technology, 2008, 75(2): 79-84. doi: 10.1364/JOT.75.000079 [136] ZHANG Y, LI L, HUANG Y F, et al. Polarization aberration in resource satellite system[J]. Proceedings of SPIE, 2005, 5638: 276-283. doi: 10.1117/12.572519 [137] LI Y H, SHEN W D, ZHENG ZH R, et al. Reduction of coating induced polarization aberrations by controlling the polarization state variation[J]. Journal of Optics, 2011, 13(5): 055701. doi: 10.1088/2040-8978/13/5/055701 [138] 李旸晖, 郝翔, 史召邑, 等. 光学薄膜诱导偏振像差对大数值孔径光学系统聚焦特性的影响[J]. 物理学报,2015,64(15):154214. doi: 10.7498/aps.64.154214LI Y H, HAO X, SHI ZH Y, et al. Effect of coating-induced polarization aberrations on the focusing properties in high numerical aperture optical system[J]. Acta Physica Sinica, 2015, 64(15): 154214. (in Chinese). doi: 10.7498/aps.64.154214 [139] JIA W T, HE W J, WANG Q, et al. Polarization aberrations corrections and polarization-dependent imaging quality analysis in polarization lidars[J]. Optics Communications, 2021, 495: 127106. doi: 10.1016/j.optcom.2021.127106 [140] 贾文涛, 贺文俊, 吴凌昊, 等. 偏振激光雷达中望远系统的偏振像差校正[J]. 光学学报,2022,42(2):0226002. doi: 10.3788/AOS202242.0226002JIA W T, HE W J, WU L H, et al. Polarization aberration correction for telescopic system in polarization lidar[J]. Acta Optica Sinica, 2022, 42(2): 0226002. (in Chinese). doi: 10.3788/AOS202242.0226002 [141] 尚红波, 刘春来, 张巍, 等. 膜系引入偏振像差对投影光刻物镜设计的影响与改进[J]. 光学学报,2015,35(1):0122003. doi: 10.3788/AOS201535.0122003SHANG H B, LIU C L, ZHANG W, et al. Effects and improvements of coating induced polarization aberration on lithography lens design[J]. Acta Optica Sinica, 2015, 35(1): 0122003. (in Chinese). doi: 10.3788/AOS201535.0122003 [142] FUJII T, KOGO J, SUZUKI K, et al. Polarization characteristics of state-of-art lithography optics reconstructed from on-body measurement[J]. Proceedings of SPIE, 2008, 6924: 69240Z. [143] 李杰, 林妩媚, 廖志杰. NA1.35投影光刻光学系统偏振像差的优化[J]. 应用光学,2019,40(4):575-582. doi: 10.5768/JAO201940.0401008LI J, LIN W M, LIAO Z J. Optimization of polarization aberration for NA1.35 lithographic projection optical system[J]. Journal of Applied Optics, 2019, 40(4): 575-582. (in Chinese). doi: 10.5768/JAO201940.0401008 [144] MAHLER A B, SMITH P K, CHIPMAN R A. Low polarization optical system design[J]. Proceedings of SPIE, 2007, 6682: 66820V. doi: 10.1117/12.734932 [145] DAUGHERTY B, CHIPMAN R. Low polarization microscope objectives[J]. Proceedings of SPIE, 2010, 7652: 76521S. doi: 10.1117/12.869110 [146] 王国聪, 王建立, 张振铎, 等. 用于空间目标偏振探测的望远镜系统偏振分析[J]. 光学学报,2014,34(12):1211003. doi: 10.3788/AOS201434.1211003WANG G C, WANG J L, ZHANG Z D, et al. Polarization analysis of the telescope system used for space target polarization detection[J]. Acta Optica Sinica, 2014, 34(12): 1211003. (in Chinese). doi: 10.3788/AOS201434.1211003 [147] 艾曼灵, 张梅骄, 金波, 等. 具有低偏振像差的偏振分色合色系统[J]. 光学仪器,2014,36(6):508-512. doi: 10.3969/j.issn.1005-5630.2014.06.009AI M L, ZHANG M J, JIN B, et al. Polarizing color separator and combiner with low polarizing aberration[J]. Optical Instruments, 2014, 36(6): 508-512. (in Chinese). doi: 10.3969/j.issn.1005-5630.2014.06.009 [148] 刘晓林. 浸没式ArF光刻物镜的光学设计及像差控制[D]. 北京: 北京理工大学, 2015.LIU X L. Optical design and aberration control for immersion ArF lithographic lens[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese). [149] MCGUIRE J P, CHIPMAN R A. Polarization aberrations in the solar activity measurements experiments (SAMEX) solar vector magnetograph[J]. Optical Engineering, 1989, 28(2): 141-147. [150] BETTONVIL F C M, COLLADOS M, FELLER A, et al. The polarization optics for the European Solar Telescope (EST)[J]. Proceedings of SPIE, 2010, 7735: 77356I. [151] LIU X L, LI T T, ZHANG X H, et al. Polarization analysis and control of a coastal zone imaging optics[J]. Proceedings of SPIE, 2021, 12069: 120690A. -