-
摘要:
本文针对里德堡微波测量领域对
1018 nm单频种子源迫切需求,研制了一种线宽为810 Hz、相对强度噪声低于−140 dB/Hz的宽调谐1018 nm单频光纤激光器。该激光器基于分布式布拉格反射(DBR)结构,使用8毫米长的掺镱光纤,激光器配有高稳定的主动温控系统以及压电陶瓷(PZT)快速频率调谐装置。温度控制范围为10 °C至80 °C,在25 °C控温2小时内DBR谐振腔的温度波动仅±0.0005 °C。经实验测试,激光器25 °C温度下保持单纵模输出,线宽为810 Hz,温度调谐范围超过0.9 nm,PZT快速调谐范围高达10 GHz,在调谐过程中不会出现跳模现象。单频激光在1 kHz低频段的相对强度噪声为−150 dB/Hz,当频率大于1.5 MHz时的相对强度噪声低于−140 dB/Hz。该结果表明激光器输出低噪声的同时实现了宽调谐。Abstract:This study addresses the urgent demand for
1018 nm single-frequency seed sources in the field of Rydberg microwave measurements by developing a widely tunable1018 nm single-frequency fiber laser with a linewidth of 810 Hz and a relative intensity noise below −140 dB/Hz.The laser employs a distributed Bragg reflector (DBR) structure with an 8-mm-long ytterbium-doped fiber and incorporates a high-stability active temperature control system and a piezoelectric ceramic (PZT)-based fast frequency tuning device. The temperature control range was from 10 °C to 80 °C, and the temperature fluctuation of the DBR resonance cavity was only ±0.0005 °C within 2 hours at 25 °C temperature control. After experimental testing, the laser maintains a single longitudinal mode output at 25°C, with a linewidth of 810Hz, a temperature tuning range of more than 0.9 nm, and a fast tuning range of the PZT up to 10 GHz, there is no mode-hopping phenomenon in the tuning process. The relative intensity noise of a single-frequency laser is −150 dB/Hz in the low frequency band of 1 kHz, and below −140 dB/Hz when the frequency is greater than 1.5 MHz. This result shows that the laser output is low noise while achieving wide tuning.-
Key words:
- low noise /
- wide tuning /
- high stability temperature control /
- PZT driver /
- Fiber lasers
-
-
[1] SONG R, BAI J X, LI ZH H, et al. Measurements of the hyperfine structure of nPJ Rydberg states by microwave spectroscopy in Cs atoms[J]. Physical Review A, 2024, 110(4): 042815. doi: 10.1103/PhysRevA.110.042815 [2] GOMES N D, PEPINO V M, BORGES B H V, et al. Rydberg atom-based microwave electrometry using polarization spectroscopy[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2024, 57(23): 235502. doi: 10.1088/1361-6455/ad8a34 [3] JING M Y, HU Y, MA J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020, 16(9): 911-915. doi: 10.1038/s41567-020-0918-5 [4] XIE CH W, WU K D, ZOU CH L, et al. Atomic electrometry based on heterodyne detection of microwave-induced optical phase shift in a Rydberg medium[J]. Physical Review Applied, 2025, 23(3): 034015. doi: 10.1103/PhysRevApplied.23.034015 [5] WANG Y H, JIA F D, HAO J H, et al. Precise measurement of microwave polarization using a Rydberg atom-based mixer[J]. Optics Express, 2023, 31(6): 10449-10457. doi: 10.1364/OE.485662 [6] QIAN J P, ZHANG L, JIANG H W, et al. 2 W single-frequency, low-noise 509 nm laser via single-pass frequency doubling of an ECDL-seeded Yb fiber amplifier[J]. Applied Optics, 2018, 57(29): 8733-8737. doi: 10.1364/AO.57.008733 [7] CEN X, GUAN X CH, YANG CH SH, et al. Short-wavelength, in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1.7 μm[J]. IEEE Photonics Technology Letters, 2021, 33(7): 350-353. doi: 10.1109/LPT.2021.3056047 [8] FANG S Y, ZHANG ZH T, YANG CH SH, et al. Gain-switched single-frequency DBR pulsed fiber laser at 2.0 μm[J]. IEEE Photonics Technology Letters, 2022, 34(5): 255-258. doi: 10.1109/LPT.2022.3149525 [9] TAO Y, ZHANG S, JIANG M, et al. High power and high efficiency single-frequency 1030 nm DFB fiber laser[J]. Optics & Laser Technology, 2022, 145: 107519. [10] JIANG M, ZHOU P, GU X J. Ultralong π-phase shift fiber Bragg grating empowered single-longitudinal mode DFB phosphate fiber laser with low-threshold and high-efficiency[J]. Scientific Reports, 2018, 8(1): 13131. doi: 10.1038/s41598-018-31528-w [11] 郭文雅, 孙威威, 吴胜保, 等. 基于可调有源双耦合器环级联复合腔滤波器的2 μm波段单纵模光纤激光器[J]. 发光学报,2025,46(2):334-342. doi: 10.37188/CJL.20240287GUO W Y, SUN W W, WU SH B, et al. 2-μm-band single-longitudinal-mode fiber laser enabled by A tunable active dual-coupler ring based compound-cavity filter[J]. Chinese Journal of Luminescence, 2025, 46(2): 334-342. (in Chinese). doi: 10.37188/CJL.20240287 [12] 王鹏飞, 延凤平, 于晨昊, 等. 基于非线性偏振旋转效应的双波长可切换掺铥光纤激光器[J]. 发光学报,2024,45(10):1716-1723. doi: 10.37188/CJL.20240174WANG P F, YAN F P, Yu CH H, et al. Dual-wavelength-switchable thulium-doped fiber laser utilizing nonlinear polarization rotation effect[J]. Chinese Journal of Luminescence, 2024, 45(10): 1716-1723. (in Chinese). doi: 10.37188/CJL.20240174 [13] HU J L, JIAO Y CH, HE Y H, et al. Improvement of response bandwidth and sensitivity of Rydberg receiver using multi-channel excitations[J]. EPJ Quantum Technology, 2023, 10(1): 51. doi: 10.1140/epjqt/s40507-023-00209-7 [14] 陈磊, 朱嘉婧, 李磐, 等. DBR单纵模光纤激光器波长温度调谐[J]. 红外与激光工程,2023,52(4):20220570.CHEN L, ZHU J J, LI P, et al. Wavelength tuning with temperature in single longitudinal mode DBR fiber laser[J]. Infrared and Laser Engineering, 2023, 52(4): 20220570. (in Chinese). [15] 刘孝兵, 王彬, 姚波, 等. 2μm波段DBR光纤激光器的超稳腔PDH稳频技术[J]. 中国激光,2023,50(23):2301014.LIU X B, WANG B, YAO B, et al. Ultrastable-cavity-based PDH frequency stabilization for 2 μm DBR fiber laser[J]. Chinese Journal of Lasers, 2023, 50(23): 2301014. (in Chinese). [16] 叶茂, 杜恩斯, 王秋玮, 等. 应用于半导体激光器的高精度温控系统设计[J]. 红外与激光工程,2024,53(4):20230713. doi: 10.3788/IRLA20230713YE M, DU E S, WANG Q W, et al. High-precision temperature control system design for laser diode[J]. Infrared and Laser Engineering, 2024, 53(4): 20230713. (in Chinese). doi: 10.3788/IRLA20230713 [17] DOU Z W, ZHU J CH, ZHANG B F, et al. Optical crystal temperature tuner based on feedforward-feedback compound control[J]. Optik, 2019, 183: 423-432. doi: 10.1016/j.ijleo.2019.02.110 [18] ZHANG D Q, ZHONG B W, JIN Z Q, et al. High-voltage amplifier with high dynamic response for stick−slip driving[J]. Circuits, Systems, and Signal Processing, 2020, 39(6): 2759-2775. doi: 10.1007/s00034-019-01289-6 [19] 王洁, 秦会斌. 基于PB58的新型压电陶瓷驱动电源设计[J]. 压电与声光,2023,45(6):898-902.WANG J, QIN H B. Design of new piezoelectric ceramic driving power based on PB58[J]. Piezoelectrics & Acoustooptics, 2023, 45(6): 898-902. (in Chinese). [20] 崔明斌, 黄俊刚, 杨修伦. 激光线宽测量方法的研究综述[J]. 激光与光电子学进展,2021,58(9):0900005.CUI M B, HUANG J G, YANG X L. Review on methods for laser linewidth measurement[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0900005. (in Chinese). -