留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于弯曲像面的大视场超紧凑型镜头设计

毕诗文 张星祥 陈力 刘俊豪 范世杰 付天骄

毕诗文, 张星祥, 陈力, 刘俊豪, 范世杰, 付天骄. 基于弯曲像面的大视场超紧凑型镜头设计[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0076
引用本文: 毕诗文, 张星祥, 陈力, 刘俊豪, 范世杰, 付天骄. 基于弯曲像面的大视场超紧凑型镜头设计[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0076
BI Shi-wen, ZHANG Xing-xiang, CHEN Li, LIU Jun-hao, FAN Shi-jie, FU Tian-jiao. Design of an ultra-compact wide-angle lens incorporating a curved image surface[J]. Chinese Optics. doi: 10.37188/CO.2025-0076
Citation: BI Shi-wen, ZHANG Xing-xiang, CHEN Li, LIU Jun-hao, FAN Shi-jie, FU Tian-jiao. Design of an ultra-compact wide-angle lens incorporating a curved image surface[J]. Chinese Optics. doi: 10.37188/CO.2025-0076

基于弯曲像面的大视场超紧凑型镜头设计

cstr: 32171.14.CO.2025-0076
基金项目: 长春光机所“旭光人才计划”(No. E4X011Y6U0)
详细信息
    作者简介:

    毕诗文(2001—),男,辽宁大连人,硕士研究生,2023年于辽宁大学物理学院获得理学学士学位,主要从事光学设计方面的研究。E-mail:bsw_ciomp@qq.com

    张星祥(1977—),男,云南大理人,博士,二级研究员,2006年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事空间宽幅成像技术、精密装调与拼接技术、在轨测试与处理方面的研究。E-mail:jan_zxx@163.com

  • 中图分类号: TN202

Design of an ultra-compact wide-angle lens incorporating a curved image surface

Funds: Supported by “Dawnlight Talent Program” (No. E4X011Y6U0), Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
More Information
  • 摘要:

    针对轻量化AR眼镜对搭载摄像头的大视场与高紧凑性的需求,本文提出了结合弯曲像面的设计方法。首先,由高斯光学理论对弯曲像面成像系统进行理论分析,推导各光学系统Petzval像面曲率特性,并通过双系统仿真对比,重点分析弯曲像面的性能优势。然后,采用分段多目标优化策略,设计了一款大视场紧凑性的光学系统。最后,对光学系统进行像质评价和公差分析。该光学系统由5片非球面塑料透镜和一片后置滤光片组成,系统焦距为3.1 mm,视场角可达80°,系统总长仅4.07 mm。设计结果表明:在223 lp/mm处,各视场的调制传递函数均优于0.32,全视场最大RMS光斑半径为2.41 μm,最大畸变为2.5%,相对照度均优于45%。研究成果可为曲面传感器的应用奠定基础,并为大视场紧凑型镜头的设计提供技术参考。

     

  • 图 1  弯曲像面上的弧长像高

    Figure 1.  Arc-length image height on curved image surface

    图 2  光学系统结构与调制传递函数示意图

    Figure 2.  Optical system configuration and modulation transfer function

    图 3  用像高和波长表示的畸变函数

    Figure 3.  Distortion function represented by image height and wavelength

    图 4  相对照度函数分布图

    Figure 4.  Relative illumination function distribution

    图 5  二维结构图

    Figure 5.  2D Layout

    图 6  系统MTF曲线图

    Figure 6.  MTF of system

    图 7  系统点列图

    Figure 7.  Spot Diagram

    图 8  系统场曲与畸变图

    Figure 8.  Field Curvature and Distortion Diagram

    图 9  系统相对照度图

    Figure 9.  Relative Illumination Diagram

    图 10  300 mm物距下调焦前后光学性能参数对比

    Figure 10.  Comparative Analysis of Optical Performance Parameters at 300 mm Object Distance Before vs. After Focus Adjustment

    表  1  光学系统的Petzval像面曲率特性

    Table  1.   Petzval curvature characteristics of optical systems.

    系统类型透镜组合屈光度特点Rp像面形状
    显微系统多正透镜短焦距,高屈光度凹向透镜
    标准摄影正负透镜组正透镜主导凹向透镜
    鱼眼摄影多负透镜负透镜高屈光度凸向透镜
    开普勒望远双正透镜目镜短焦距主导凹向透镜
    伽利略望远正负透镜组负目镜高屈光度凸向透镜
    下载: 导出CSV

    表  2  设计指标

    Table  2.   Design Specifications

    项目参数
    焦距/mm3.0~3.3
    F数2.2
    视场角/(°)2ω=80
    光学畸变/%≤2.5
    系统总长/mm≤4.5
    MTF/(lp/mm)≥0.3@233(0-0.7Y)
    下载: 导出CSV

    表  3  镜片参数

    Table  3.   Lens Parameters

    序号面型曲率半径/mm厚度/mm材料折射率阿贝数
    物面标准面无限无限
    光阑偶次非球面1.7770.3506015S-041.53354.975
    2偶次非球面9.8770.110
    3偶次非球面−1.7630.250OKP-4HT1.63123.415
    4偶次非球面−3.6250.100
    5偶次非球面1.8500.350ARTON_FX47271.52352.125
    6偶次非球面5.1620.500
    7偶次非球面−5.6040.350PMMA1.49257.441
    8偶次非球面−1.9081.100
    9偶次非球面135.2350.350OKP-4HT1.63123.415
    10偶次非球面2.5290.200
    11标准面无限0.200H-K9L1.51764.212
    12标准面无限0.210
    13标准面−20.0000.000
    下载: 导出CSV

    表  4  非球面系数

    Table  4.   Aspheric Coefficients

    序号kA4A6A8A10A12
    10.00000E+00−7.02848E-02−8.04067E-03−1.76041E-01−1.60913E-02−4.84484E-02
    22.08083E-01−1.36408E-01−3.30294E-02−1.84115E-013.69911E-01−3.12379E-01
    30.00000E+002.79638E-01−1.56058E-011.31685E-011.57258E-01−2.49223E-01
    41.29397E-022.02942E-01−5.50542E-022.31616E-01−3.01072E-016.48883E-02
    50.00000E+00−1.38136E-014.35390E-02−6.98809E-021.06082E-01−3.35713E-02
    6−1.30823E-021.28664E-02−1.21648E-016.18287E-02−2.44867E-023.36290E-02
    7−6.27958E-026.50400E-02−4.97805E-03−1.91219E-023.37033E-032.25369E-03
    80.00000E+007.67427E-021.05464E-021.79650E-02−8.40372E-034.07342E-04
    92.53734E+01−1.41854E-013.27186E-031.08393E-02−1.66595E-03−5.59933E-05
    100.00000E+00−1.13567E-012.48152E-02−5.09814E-037.67813E-04−6.13429E-05
    下载: 导出CSV

    表  5  近景调焦性能参数变化率

    Table  5.   Near-field Focus Adjustment Performance Parameter Variation Rates

    参数 物距 变化率
    无穷远 300 mm
    MTF(@223 lp/mm) 0.32 0.29 −9.38%
    RMS半径(μm) 2.41 2.64 +9.54%
    场曲(mm) 0.025 0.026 +4.00%
    畸变(%) −2.5 −2.6 +4.00%
    相对照度(%) 46 45.5 −1.09%
    下载: 导出CSV

    表  6  公差分配

    Table  6.   Tolerance Allocation

    公差类型参数
    曲率半径±1.5 fringes
    厚度±0.0015 mm
    偏心±0.0015 mm
    倾斜±3'
    下载: 导出CSV

    表  7  系统公差分析结果

    Table  7.   Tolerance Analysis Results

    蒙特卡洛分析MTF
    90%0.23129849
    80%0.24933111
    50%0.28139853
    20%0.31265427
    10%0.32439743
    下载: 导出CSV
  • [1] 陈露, 刘辉, 封志明, 等. 基于局部焦距追迹计算优化的广角镜头设计方法[J]. 光子学报,2024,53(3):0322002. doi: 10.3788/gzxb20245303.0322002

    CHEN L, LIU H, FENG ZH M, et al. Design method of wide angle lens based on optimization of local focal length through ray tracing[J]. Acta Photonica Sinica, 2024, 53(3): 0322002. (in Chinese). doi: 10.3788/gzxb20245303.0322002
    [2] 张越, 张宁, 徐熙平. 改进AO优化算法的折反射全景镜头畸变参数估计[J]. 中国光学(中英文),2025,18(1):89-104. doi: 10.37188/CO.2024-0118

    ZHANG Y, ZHANG N, XU X P. Improved AO optimization algorithm for distortion parameter estimation of catadioptric omnidirectional lens[J]. Chinese Optics, 2025, 18(1): 89-104. (in Chinese). doi: 10.37188/CO.2024-0118
    [3] 熊玉朋, 陈适宇, 黄铖, 等. 基于自由曲面光学元件的大视场光学成像系统[J]. 光学 精密工程,2024,32(9):1261-1272. doi: 10.37188/OPE.20243209.1261

    XIONG Y P, CHEN SH Y, HUANG CH, et al. Large field optical imaging system based on freeform surface optics[J]. Optics and Precision Engineering, 2024, 32(9): 1261-1272. (in Chinese). doi: 10.37188/OPE.20243209.1261
    [4] WU J M, GUO Y D, DENG CH, et al. An integrated imaging sensor for aberration-corrected 3D photography[J]. Nature, 2022, 612(7938): 62-71. doi: 10.1038/s41586-022-05306-8
    [5] 韩耀辉, 王鹍, 朱友强, 等. 光子集成干涉阵列视场拼接子孔径光路设计[J]. 中国光学(中英文),2024,17(6):1458-1466. doi: 10.37188/CO.2024-0030

    HAN Y H, WANG K, ZHU Y Q, et al. Photonic-integrated interferometric array field-of-view splicing subaperture optical path design[J]. Chinese Optics, 2024, 17(6): 1458-1466. (in Chinese). doi: 10.37188/CO.2024-0030
    [6] LOMBARDO S, BEHAGHEL T, CHAMBION B, et al. Curved CMOS sensor: characterization of the first fully functional prototype[J]. Proceedings of SPIE, 2018, 10679: 1067910.
    [7] ITONAGA K, ARIMURA T, MATSUMOTO K, et al. A novel curved CMOS image sensor integrated with imaging system[C]. 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, IEEE, 2014: 1-2.
    [8] GUENTER B, JOSHI N, STOAKLEY R, et al. Highly curved image sensors: a practical approach for improved optical performance[J]. Optics Express, 2017, 25(12): 13010-13023. doi: 10.1364/OE.25.013010
    [9] DUMAS D, FENDLER M, BAIER N, et al. Curved focal plane detector array for wide field cameras[J]. Applied Optics, 2012, 51(22): 5419-5424. doi: 10.1364/AO.51.005419
    [10] JOAQUINA K, CALVINHAC L, STRUSS Q, et al. Curved cmos imaging sensors for enhanced astronomical optical instruments[J]. Proceedings of SPIE, 2022, 12191: 121910H.
    [11] JOAQUINA K, JAHN W, STRUSS Q, et al. Curved CMOS imaging sensor: development and reliability test results[J]. Proceedings of SPIE, 2023, 12777: 127776S.
    [12] XUE G, ZHANG CH X, ZHANG ZH X, et al. Analysis of the impact of temperature on the performance of curved surface CMOS image sensors[J]. AIP Advances, 2025, 15(2): 025101. doi: 10.1063/5.0252687
    [13] RESHIDKO D, SASIAN J. Optical analysis of miniature lenses with curved imaging surfaces[J]. Applied Optics, 2015, 54(28): E216-E223. doi: 10.1364/AO.54.00E216
    [14] ZUBER F, CHAMBION B, GASCHET C, et al. Tolerancing and characterization of curved image sensor systems[J]. Applied Optics, 2020, 59(28): 8814-8821. doi: 10.1364/AO.400950
    [15] HUGOT E, LOMBARDO S, BEHAGHEL T, et al. Curved sensors: experimental performance of CMOS prototypes and wide field related imagers[J]. Proceedings of SPIE, 2019, 11180: 111802Y.
    [16] Image Sensors World. Review of 3D Cameras for AR Glasses[EB/OL]. Image Sensors World, (2018-04-26)[2025-06-15]. https://image-sensors-world.blogspot.com/search?q=Review+of+3D+cameras+for+AR+glasses.
    [17] 李航, 颜昌翔. 800万像素手机广角镜头设计[J]. 中国光学,2014,7(3):456-461.

    LI H, YAN CH X. Design of wide-angle lens for 8 mega-pixel mobile phone camera[J]. Chinese Optics, 2014, 7(3): 456-461. (in Chinese).
    [18] 李延伟, 伍雁雄, 陈太喜, 等. 超薄超短物像距高分辨率检测成像系统设计与试验[J]. 中国光学(中英文),2024,17(1):61-68. doi: 10.37188/CO.2023-0099

    LI Y W, WU Y X, CHEN T X, et al. Design and experiment of high-resolution detection imaging system with ultra-thin and ultra-short object-image distance[J]. Chinese Optics, 2024, 17(1): 61-68. (in Chinese). doi: 10.37188/CO.2023-0099
    [19] 史晓刚, 薛正辉, 李会会, 等. 增强现实显示技术综述[J]. 中国光学,2021,14(5):1146-1161. doi: 10.37188/CO.2021-0032

    SHI X G, XUE ZH H, LI H H, et al. Review of augmented reality display technology[J]. Chinese Optics, 2021, 14(5): 1146-1161. (in Chinese). doi: 10.37188/CO.2021-0032
    [20] 张以谟. 现代应用光学[M]. 北京: 电子工业出版社, 2018.

    ZHANG Y M. Contemporary Applied Optics[M]. Beijing: Publishing House of Electronics Industry, 2018. (in Chinese).
    [21] 李晓彤, 岑兆丰. 几何光学·像差·光学设计[M]. 杭州: 浙江大学出版社, 2003.

    LI X T, CEN ZH F. Geometrical Optics, Aberrations and Optical Design[M]. Hangzhou: Zhejiang University Press, 2003. (in Chinese) (查阅网上资料, 未找到本条文献英文信息, 请确认).
    [22] 李升辉. 大相对孔径高分辨率手机镜头设计[J]. 激光技术,2022,46(1):139-142.

    LI SH H. Large numerical aperture and high resolution mobile phone lens[J]. Laser Technology, 2022, 46(1): 139-142. (in Chinese).
    [23] 玉晶光电(厦门)有限公司. 光学成像镜头: 中国, 108627958B[P]. 2020-03-20.

    Largan Precision (Xiamen) Co. , Ltd. Optical imaging lens: CN, 108627958B[P]. 2020-03-20. (in Chinese).
    [24] 大立光电股份有限公司. 光学影像撷取镜片组、取像装置及电子装置: 中国, 108931845B[P]. 2020-05-15.

    Largan Precision Co. , Ltd. Optical imaging lens assembly, image capturing unit and electronic device: CN, 108931845B[P]. 2020-05-15. (in Chinese).
    [25] MOSS S, ZHANG Z, BEVAN A J, et al. Large area curved silicon modules for future trackers[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2025, 1075: 170388. doi: 10.1016/j.nima.2025.170388
    [26] 师途, 杨甬英, 张磊, 等. 非球面光学元件的面形检测技术[J]. 中国光学,2014,7(1):26-46.

    SHI T, YANG Y Y, ZHANG L, et al. Surface testing methods of aspheric optical elements[J]. Chinese Optics, 2014, 7(1): 26-46. (in Chinese).
    [27] 张旭, 李世杰, 刘丙才, 等. 凹非球面的非零位干涉检测技术[J]. 中国光学(中英文),2024,17(1):140-149. doi: 10.37188/CO.2023-0042

    ZHANG X, LI SH J, LIU B C, et al. A non-null interferometry for concave aspheric surface[J]. Chinese Optics, 2024, 17(1): 140-149. (in Chinese). doi: 10.37188/CO.2023-0042
    [28] 勾治践, 樊仲维, 卢锷, 等. 光学塑料透镜注射成型关键技术的研究[J]. 光学 精密工程,2000,8(6):526-531.

    GOU ZH J, FAN ZH W, LU E, et al. Injection molding method for optical plastics lens[J]. Optics and Precision Engineering, 2000, 8(6): 526-531. (in Chinese).
    [29] MALACARA-HERNÁNDEZ D, MALACARA-HERNÁNDEZ Z. Handbook of Optical Design[M]. 3rd ed. Boca Raton: CRC Press, 2017.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-08-21

目录

    /

    返回文章
    返回