留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外双波段制冷型变焦Offner型光谱成像系统设计

王翘楚 耿海涛 虞林瑶 张葆

王翘楚, 耿海涛, 虞林瑶, 张葆. 红外双波段制冷型变焦Offner型光谱成像系统设计[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0080
引用本文: 王翘楚, 耿海涛, 虞林瑶, 张葆. 红外双波段制冷型变焦Offner型光谱成像系统设计[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0080
WANG Qiao-chu, GENG Hai-tao, YU Lin-yao, ZHANG Bao. Design of cooled infrared dual-band zoom focal spectral imaging optical system based on Offner scheme[J]. Chinese Optics. doi: 10.37188/CO.2025-0080
Citation: WANG Qiao-chu, GENG Hai-tao, YU Lin-yao, ZHANG Bao. Design of cooled infrared dual-band zoom focal spectral imaging optical system based on Offner scheme[J]. Chinese Optics. doi: 10.37188/CO.2025-0080

红外双波段制冷型变焦Offner型光谱成像系统设计

cstr: 32171.14.CO.2025-0080
基金项目: 国家重点科研项目(No. 303060302)
详细信息
    作者简介:

    王翘楚(2001—),男,吉林白城人,中国科学院长春光学精密机械与物理研究所硕博连读博士研究生在读,主要从事机器视觉、图像处理、光学设计等方面的研究。E-mail:wangqiaochu23@mails.ucas.ac.cn

    耿海涛(1999—),男,山东潍坊人,硕士,2025年于中国科学院长春光学精密机械与物理研究所获得硕士学位,主要从事光学设计方面的研究。E-mail:haitaogeng914@163.com

    虞林瑶(1987—),男,吉林长春人,博士,副研究员,硕士生导师,2016年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光学设计与装调检测方面的研究。E-mail: yulinyao87@163.com

    张 葆(1966—),男,吉林磐石人,博士,研究员,博士生导师,2004年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事图像处理、光学设计、目标识别与跟踪的研究。E-mail:zhangb@ciomp.ac.cn

  • 中图分类号: TP394.1;TH691.9

Design of cooled infrared dual-band zoom focal spectral imaging optical system based on Offner scheme

Funds: Supported by National Key Research Program of China (No. 303060302)
More Information
  • 摘要:

    随着中长红外高光谱成像技术的突破性进展,军用高光谱成像系统凭借其独特的特征识别能力和隐蔽侦察优势,在现代战场态势感知领域展现出了显著的战略价值,例如实时目标识别、反伪装侦察及全球军事目标动态监控。本研究面向航空探测应用需求,基于320×240像素双色制冷型红外探测器,设计了一种工作于中波红外(3.7~4.8 μm)和长波红外(7.7~9.5 μm)的双波段Offner型光谱成像系统。该系统采用折射与折反射混合光学结构,实现了32 mm、200 mm、800 mm三视场切换式变焦功能。光学系统采用Offner分光结构,有效抑制了系统初级像差;其次,通过引入二次成像中继系统,实现了100%冷光阑匹配,有效降低了冷反射效应。实验测试表明,该系统在各波段及不同焦距状态下均表现出优异的成像性能:在特征频率17 lp/mm处,调制传递函数接近衍射极限,且温度变化对成像质量变化影响不大;光学像质满足指标设计。该光学系统兼具宽光谱响应、大变倍比(25×)和快速视场切换等特点。光谱分辨率达到25 nm,其成像质量与光谱分辨能力满足航空光电侦察的技术需求,在军事侦察、安防监控及环境监测等领域具有重要的应用价值。

     

  • 图 1  光学系统总体结构原理图

    Figure 1.  Schematic diagram of the overall structure of the optical system.

    图 2  光学系统的变倍方式示意图

    Figure 2.  Schematic diagram of the zoom method of the optical system.

    图 3  R-C系统原理图

    Figure 3.  R-C (Ritchey-Chrétien) system schematic.

    图 4  Offner分光系统原理图

    Figure 4.  Offner beam splitting system schematic.

    图 5  32 mm和200 mm的前置望远物镜系统设计图

    Figure 5.  Front telescope objective system design for 32 mm and 200 mm.

    图 6  800 mm的前置望远物镜系统设计图

    Figure 6.  Front telescope objective system design for 800 mm.

    图 7  不同焦距下前置望远物镜系统的点列图

    Figure 7.  Spot diagrams of the front telescope objective system at different focal lengths.

    图 8  前置望远物镜系统的MTF图

    Figure 8.  MTF diagram of the front telescope objective system.

    图 9  Offner分光系统设计图

    Figure 9.  Offner beam splitting system design diagram.

    图 10  Offner分光系统点列图(左图为中波中心波长4.25 μm,右图为长波中心波长8.1 μm)

    Figure 10.  Offner beam splitting system spot diagrams. (left image is the center wavelength of MWIR 4.25 μm, right image is the center wavelength of LWIR 8.1 μm)

    图 11  Offner分光系统MTF图

    Figure 11.  MTF diagram of Offner beam splitting system.

    图 12  二次成像中继系统设计图

    Figure 12.  Secondary imaging relay system design diagram.

    图 13  二次成像中继系统点列图(左图为3.7 μm~4.8 μm,右图为7.7 μm~9.5 μm)

    Figure 13.  Spot diagrams of the secondary imaging relay system. (left image: 3.7 μm−4.8 μm; right image: 7.7 μm−9.5 μm)

    图 14  二次成像中继系统MTF图

    Figure 14.  MTF diagrams of the secondary imaging relay system.

    图 15  短焦(32 mm)红外光谱成像系统结构图

    Figure 15.  Structure of a short-focus (32 mm) infrared spectral imaging system.

    图 16  中焦(200 mm)红外光谱成像系统结构图

    Figure 16.  Structure of a medium-focus (200 mm) infrared spectral imaging system.

    图 17  长焦(800 mm)红外光谱成像系统结构图

    Figure 17.  Structure of a long-focus (800 mm) infrared spectral imaging system.

    图 18  不同焦距下红外光谱成像系统的点列图

    Figure 18.  Spot diagrams of infrared spectral imaging systems at different focal lengths.

    图 19  不同红外光谱成像系统的MTF图

    Figure 19.  MTF diagrams of different infrared spectral imaging systems

    图 20  不同焦距下红外光谱成像系统的分辨率特性图

    Figure 20.  Plot of resolution characteristics of infrared spectral imaging systems at different focal lengths.

    图 21  冷反射现象光线追迹示意图

    Figure 21.  Schematic diagram of ray tracing for cold reflection phenomenon.

    图 22  靶面冷反射能量图(短焦32 mm)

    Figure 22.  Target surface cold reflection energy map (32 mm short focus).

    图 23  靶面冷反射能量图(长焦800 mm)

    Figure 23.  Target surface cold reflection energy map (800 mm long focus).

    图 24  中波波段不同焦距在−40 °C和60 °C时的MTF曲线

    Figure 24.  MTF curves at different focal lengths in the medium wave band at -40°C and 60°C.

    图 25  长波波段不同焦距在−40 °C和60 °C时的MTF曲线

    Figure 25.  MTF curves at different focal lengths in the long wave band at -40°C and 60°C.

    表  1  系统设计指标

    Table  1.   System design indicators

    Parameters Value
    Working Spectrum/μm 3.7 μm−4.8 μm, 7.7 μm−9.5 μm
    F# 4
    Zoom Magnification 25×
    Detector Specifications 320 pixel×240 pixel
    Detector Pixel 30 μm×30 μm
    Focal Length 32 mm, 200 mm, 800 mm
    Spectral Resolution/nm 25
    Dispersion Width/mm 7.68
    下载: 导出CSV

    表  2  常见的宽波段红外材料参数

    Table  2.   Common broadband infrared material parameters

    材料 透射范围
    (μm)
    折射率
    λ=4 μm)
    阿贝数
    λ=3~5 μm)
    阿贝数
    λ=8~12 μm)
    Ge 2~23 4.0247 103.4 834.3
    Si 1.1~23 3.4255 250 2200
    GaAs 0.9~16 3.3070 146.0 107.4
    ZnSe 0.55~18 2.4331 176.9 58.0
    ZnS 0.42~18.2 2.3468 109.63 22.9
    AMTIR1 1~14 2.5144 196.7 115.2
    IG6 1~12 2.7947 168 163
    IRG205 1~15 2.6222 96.63 93.63
    下载: 导出CSV

    表  3  可能发生冷反射现象的第2、3、4、7、11面的YNI和I/IBAR值

    Table  3.   YNI and I/IBAR for surfaces 2, 3, 4, 7 and 11 where cold reflections may occur

    234711
    YNI中波−0.407−0.4830.071−0.0870.499
    长波−0.403−0.4800.073−0.0810.503
    I/IBAR中波0.4040.4570.1960.0640.001
    长波0.4030.4570.2020.0500.004
    下载: 导出CSV
  • [1] 袁嘉浩. 光谱成像技术在档案字迹、图形恢复中的研究综述[J]. 四川档案,2025,25(1):23-25.

    YUAN J H. Review on the research of spectral imaging technology in the restoration of archive handwriting and graphics[J]. Sichuan Archives, 2025, 25(1): 23-25. (in Chinese) (查阅网上资料, 未找到对应的英文翻译, 请确认).
    [2] 张远利. 多光谱光电探测技术在军事上的应用研究[J]. 红外技术,2024,46(11):1274-1279.

    ZHANG Y L. Application of multispectral photoelectric detection technology in military field[J]. Infrared Technology, 2024, 46(11): 1274-1279. (in Chinese).
    [3] 胡晨霞. 紧凑型折反式制冷型中波红外成像光学系统设计[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2024.

    HU CH X. Design of compact catadioptric cooled mid-wavelength infrared imaging optical system[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2024. (in Chinese).
    [4] 刘鑫, 王晶锦, 刘庆梅, 等. 大视场长波红外光学系统混合无热化设计[J]. 红外与激光工程,2025,54(2):20240360. doi: 10.3788/IRLA20240360

    LIU X, WANG J J, LIU Q M, et al. Hybrid athermalization design of LWIR optical system with large field of view[J]. Infrared and Laser Engineering, 2025, 54(2): 20240360. (in Chinese). doi: 10.3788/IRLA20240360
    [5] 罗刚银, 王弼陡, 陈玉琦, 等. Offner型消热差中波红外成像光谱仪设计[J]. 红外与激光工程,2017,46(11):1104004. doi: 10.3788/IRLA201746.1104004

    LUO G Y, WANG B D, CHEN Y Q, et al. Design of athermal mid-infrared imaging spectrometer based on Offner scheme[J]. Infrared and Laser Engineering, 2017, 46(11): 1104004. (in Chinese). doi: 10.3788/IRLA201746.1104004
    [6] 刘子寒. 长波红外成像光谱仪的设计与研究[D]. 苏州: 苏州大学, 2013.

    LIU Z H. Design and research of a long-wave infrared imaging spectrometer[D]. Suzhou: Soochow University, 2013. (in Chinese).
    [7] 夏磊. 用于大豆成分检测的近红外光谱仪关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2023.

    XIA L. Research on key technologies of near infraed spectrometer for soybean composition detection[D]. Harbin: Harbin Institute of Technology, 2023. (in Chinese).
    [8] 李诚良. 基于光机热集成分析的空间低温红外光谱仪研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.

    LI CH L. Research on space cryogenic infrared spectrometer based on integrated structural/thermal/optical analysis[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science), 2021. (in Chinese).
    [9] LI SH, LI CH L, XU SH Y, et al. Preflight radiometric calibration of a carbon dioxide spectrometer[J]. Measurement Science and Technology, 2019, 30(5): 055401. doi: 10.1088/1361-6501/ab0c6d
    [10] 贾文波, 秦天翔, 黄蕴涵, 等. 红外双波段成像光谱仪光学系统的设计与分析[J]. 中国激光,2021,48(23):2311002. doi: 10.3788/CJL202148.2311002

    JIA W B, QIN T X, HUANG Y H, et al. Design and analysis of optical system of an infrared dual-band imaging spectrometer[J]. Chinese Journal of Lasers, 2021, 48(23): 2311002. (in Chinese). doi: 10.3788/CJL202148.2311002
    [11] 赵志刚, 王鑫, 彭廷海, 等. 国外中长波双波段红外成像技术的发展及应用[J]. 红外技术,2020,42(4):312-319. doi: 10.3724/SP.J.7101502294

    ZHAO ZH G, WANG X, PENG T H, et al. Status quo and application of middle and long wave dual-band infrared imaging technologies in occident[J]. Infrared Technoiogy, 2020, 42(4): 312-319. (in Chinese). doi: 10.3724/SP.J.7101502294
    [12] 耿海涛, 虞林瑶, 张葆. 大变倍比制冷型红外双波段变焦光学系统设计[J]. 中国光学(中英文),2024,17(6):1431-1441. doi: 10.37188/CO.2024-0007

    GENG H T, YU L Y, ZHANG B. Design of cooled infrared dual-band zoom optical system with large-magnification-ratio[J]. Chinese Optics, 2024, 17(6): 1431-1441. (in Chinese). doi: 10.37188/CO.2024-0007
    [13] 栗洋洋, 杨加强, 彭晴晴, 等. 制冷型红外双波段广角无热化光学系统设计[J]. 激光与红外,2023,53(5):712-715.

    LI Y Y, YANG J Q, PENG Q Q, et al. Design of cooled infrared dual-band wide angle athermal optical system[J]. Laser & Infrared, 2023, 53(5): 712-715. (in Chinese).
    [14] 李刚, 张恒金, 徐沛尧. 红外R-C光学系统设计[J]. 红外技术,2004,26(2):60-63.

    LI G, ZHANG H J, XU P Y. Design of the infrared R-C optical system[J]. Infrared Technology, 2004, 26(2): 60-63. (in Chinese).
    [15] 佟亚军, 吴刚, 周全, 等. Offner成像光谱仪的设计方法[J]. 光学学报,2010,30(4):1148-1152. doi: 10.3788/AOS20103004.1148

    TONG Y J, WU G, ZHOU Q, et al. Design method of Offner-type imaging spectrometer[J]. Acta Optica Sinica, 2010, 30(4): 1148-1152. (in Chinese). doi: 10.3788/AOS20103004.1148
    [16] PRIETO-BLANCO X, MONTERO-ORILLE C, COUCE B, et al. Analytical design of an Offner imaging spectrometer[J]. Optics Express, 2006, 14(20): 9156-9168. doi: 10.1364/OE.14.009156
    [17] 刘智颖, 高柳絮, 黄蕴涵. offner型连续变焦中波红外光谱成像系统设计[J]. 红外与激光工程,2019,48(7):0718003. doi: 10.3788/IRLA201948.0718003

    LIU ZH Y, GAO L X, HUANG Y H. Design of continuous zoom medium-wave infrared spectral imaging system based on offner scheme[J]. Infrared and Laser Engineering, 2019, 48(7): 0718003. (in Chinese). doi: 10.3788/IRLA201948.0718003
    [18] 王希, 彭晴晴, 徐长彬, 等. 大视场大孔径制冷型红外光学系统设计[J]. 激光与红外,2023,53(10):1575-1578. doi: 10.3969/j.issn.1001-5078.2023.10.017

    WANG X, PENG Q Q, XU CH B, et al. Refrigerated infrared optical system design with large aperture and wide field-of-view[J]. Laser & Infrared, 2023, 53(10): 1575-1578. (in Chinese). doi: 10.3969/j.issn.1001-5078.2023.10.017
    [19] 陈津津, 金宁, 周立钢, 等. 高清晰大变倍比中波红外连续变焦光学系统设计[J]. 红外与激光工程,2013,42(10):2742-2747.

    CHEN J J, JIN N, ZHOU L G, et al. High resolution middle infrared continuous zoom optical system with large zoom range[J]. Infrared and Laser Engineering, 2013, 42(10): 2742-2747. (in Chinese).
    [20] 卜和阳, 虞林瑶, 田浩南, 等. 中波红外成像系统冷反射抑制[J]. 中国光学(中英文),2023,16(6):1414-1423. doi: 10.37188/CO.2023-0008

    BU H Y, YU L Y, TIAN H N, et al. Narcissus suppression of medium-wave infrared imaging system[J]. Chinese Optics, 2023, 16(6): 1414-1423. (in Chinese). doi: 10.37188/CO.2023-0008
    [21] 董一优. 折衍射致冷红外光学系统的冷反射特性研究[D]. 长春: 长春理工大学, 2024.

    DONG Y Y. Characterization of narcissus in refractive diffraction-cooled infrared optical systems[D]. Changchun: Changchun University of Science and Technology, 2024. (in Chinese).
    [22] 李康, 周峰, 王保华, 等. 制冷型被动式消热差红外光学系统设计[J]. 中国光学(中英文),2023,16(4):853-860. doi: 10.37188/CO.2022-0205

    LI K, ZHOU F, WANG B H, et al. Passive athermalization design of a cooled infrared optical system[J]. Chinese Optics, 2023, 16(4): 853-860. (in Chinese). doi: 10.37188/CO.2022-0205
    [23] 闫佩佩, 樊学武. R-C光学系统设计及杂散光分析[J]. 红外技术,2011,33(4):214-218.

    YAN P P, FAN X W. Optical design and stray light analysis of R-C system[J]. Infrared Technology, 2011, 33(4): 214-218. (in Chinese).
    [24] 李西杰, 刘钧, 陈阳. 双波段大变倍比连续共变焦光学系统设计[J]. 光子学报,2016,45(10):1022003. doi: 10.3788/gzxb20164510.1022003

    LI X J, LIU J, CHEN Y. Design of dual-band, high zoom ratio and continuous Co-focal optical system[J]. Acta Photonica Sinica, 2016, 45(10): 1022003. (in Chinese). doi: 10.3788/gzxb20164510.1022003
    [25] 刘博. 制冷型红外双波段3倍变焦光学系统设计[D]. 长春: 长春理工大学, 2020.

    LIU B. Design of cooling infrared dual-band 3x zoom optical system[D]. Changchun: Changchun University of Science and Technology, 2020. (in Chinese).
    [26] 刘钧, 张玺斌, 高明. 制冷型中/长红外双波段双视场全景光学系统设计[J]. 应用光学,2016,37(3):456-464. doi: 10.5768/JAO201637.0306001

    LIU J, ZHANG X B, GAO M. Design of cold MWIR/LWIR infrared dual-band/dual-field panoramic optical system[J]. Journal of Applied Optics, 2016, 37(3): 456-464. (in Chinese). doi: 10.5768/JAO201637.0306001
  • 加载中
图(25) / 表(3)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-08-21

目录

    /

    返回文章
    返回