Design of cooled infrared dual-band zoom focal spectral imaging optical system based on Offner scheme
-
摘要:
随着中长红外高光谱成像技术的突破性进展,军用高光谱成像系统凭借其独特的特征识别能力和隐蔽侦察优势,在现代战场态势感知领域展现出了显著的战略价值,例如实时目标识别、反伪装侦察及全球军事目标动态监控。本研究面向航空探测应用需求,基于320×240像素双色制冷型红外探测器,设计了一种工作于中波红外(3.7~4.8 μm)和长波红外(7.7~9.5 μm)的双波段Offner型光谱成像系统。该系统采用折射与折反射混合光学结构,实现了32 mm、200 mm、800 mm三视场切换式变焦功能。光学系统采用Offner分光结构,有效抑制了系统初级像差;其次,通过引入二次成像中继系统,实现了100%冷光阑匹配,有效降低了冷反射效应。实验测试表明,该系统在各波段及不同焦距状态下均表现出优异的成像性能:在特征频率17 lp/mm处,调制传递函数接近衍射极限,且温度变化对成像质量变化影响不大;光学像质满足指标设计。该光学系统兼具宽光谱响应、大变倍比(25×)和快速视场切换等特点。光谱分辨率达到25 nm,其成像质量与光谱分辨能力满足航空光电侦察的技术需求,在军事侦察、安防监控及环境监测等领域具有重要的应用价值。
Abstract:With the breakthrough progress of mid-wave and long-wave infrared hyperspectral imaging technology, the military hyperspectral imaging system, with its unique feature recognition capability and covert reconnaissance advantages, has demonstrated significant strategic value in the field of modern battlefield situational awareness, e.g., real-time target identification, anti-camouflage reconnaissance, and dynamic monitoring of global military targets. In this study, a dual-band Offner-type spectral imaging system operating in the mid-wave infrared (3.7−4.8 μm) and long-wave infrared (7.7−9.5 μm) is designed for aerial detection applications based on a 320×240-pixel dual-color cooled infrared detector. The system adopts a hybrid refractive and refractive-reflective optical structure, and realizes a three-field-of-view switching zoom function of 32 mm, 200 mm and 800 mm. The optical system adopts the Offner spectroscopic structure, which effectively suppresses the primary aberration of the system; secondly, through the introduction of the secondary imaging relay system, it achieves 100% cold diaphragm matching and significantly reduces the cold reflection effect. Experimental tests show that the system exhibits excellent imaging performance in all bands and at different focal lengths: at a characteristic frequency of 17 lp/mm, the modulation transfer function approaches the diffraction limit, and temperature changes have little effect on imaging quality; optical image quality meets design specifications. The optical system is characterized by wide spectral response, large magnification ratio (25×) and fast field of view switching. The spectral resolution reaches 25 nm, and its imaging quality and spectral resolution meet the technical requirements of aviation photoelectric reconnaissance, which has important application value in military reconnaissance, security monitoring and environmental monitoring.
-
Key words:
- optical system design /
- Offner /
- infrared dual-band /
- cooled /
- zoom system
-
表 1 系统设计指标
Table 1. System design indicators
Parameters Value Working Spectrum/μm 3.7 μm−4.8 μm, 7.7 μm−9.5 μm F# 4 Zoom Magnification 25× Detector Specifications 320 pixel×240 pixel Detector Pixel 30 μm×30 μm Focal Length 32 mm, 200 mm, 800 mm Spectral Resolution/nm 25 Dispersion Width/mm 7.68 表 2 常见的宽波段红外材料参数
Table 2. Common broadband infrared material parameters
材料 透射范围
(μm)折射率
(λ=4 μm)阿贝数
(λ=3~5 μm)阿贝数
(λ=8~12 μm)Ge 2~23 4.0247 103.4 834.3 Si 1.1~23 3.4255 250 2200 GaAs 0.9~16 3.3070 146.0 107.4 ZnSe 0.55~18 2.4331 176.9 58.0 ZnS 0.42~18.2 2.3468 109.63 22.9 AMTIR1 1~14 2.5144 196.7 115.2 IG6 1~12 2.7947 168 163 IRG205 1~15 2.6222 96.63 93.63 表 3 可能发生冷反射现象的第2、3、4、7、11面的YNI和I/IBAR值
Table 3. YNI and I/IBAR for surfaces 2, 3, 4, 7 and 11 where cold reflections may occur
面 2 3 4 7 11 YNI 中波 −0.407 −0.483 0.071 −0.087 0.499 长波 −0.403 −0.480 0.073 −0.081 0.503 I/IBAR 中波 0.404 0.457 0.196 0.064 0.001 长波 0.403 0.457 0.202 0.050 0.004 -
[1] 袁嘉浩. 光谱成像技术在档案字迹、图形恢复中的研究综述[J]. 四川档案,2025,25(1):23-25.YUAN J H. Review on the research of spectral imaging technology in the restoration of archive handwriting and graphics[J]. Sichuan Archives, 2025, 25(1): 23-25. (in Chinese) (查阅网上资料, 未找到对应的英文翻译, 请确认). [2] 张远利. 多光谱光电探测技术在军事上的应用研究[J]. 红外技术,2024,46(11):1274-1279.ZHANG Y L. Application of multispectral photoelectric detection technology in military field[J]. Infrared Technology, 2024, 46(11): 1274-1279. (in Chinese). [3] 胡晨霞. 紧凑型折反式制冷型中波红外成像光学系统设计[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2024.HU CH X. Design of compact catadioptric cooled mid-wavelength infrared imaging optical system[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2024. (in Chinese). [4] 刘鑫, 王晶锦, 刘庆梅, 等. 大视场长波红外光学系统混合无热化设计[J]. 红外与激光工程,2025,54(2):20240360. doi: 10.3788/IRLA20240360LIU X, WANG J J, LIU Q M, et al. Hybrid athermalization design of LWIR optical system with large field of view[J]. Infrared and Laser Engineering, 2025, 54(2): 20240360. (in Chinese). doi: 10.3788/IRLA20240360 [5] 罗刚银, 王弼陡, 陈玉琦, 等. Offner型消热差中波红外成像光谱仪设计[J]. 红外与激光工程,2017,46(11):1104004. doi: 10.3788/IRLA201746.1104004LUO G Y, WANG B D, CHEN Y Q, et al. Design of athermal mid-infrared imaging spectrometer based on Offner scheme[J]. Infrared and Laser Engineering, 2017, 46(11): 1104004. (in Chinese). doi: 10.3788/IRLA201746.1104004 [6] 刘子寒. 长波红外成像光谱仪的设计与研究[D]. 苏州: 苏州大学, 2013.LIU Z H. Design and research of a long-wave infrared imaging spectrometer[D]. Suzhou: Soochow University, 2013. (in Chinese). [7] 夏磊. 用于大豆成分检测的近红外光谱仪关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2023.XIA L. Research on key technologies of near infraed spectrometer for soybean composition detection[D]. Harbin: Harbin Institute of Technology, 2023. (in Chinese). [8] 李诚良. 基于光机热集成分析的空间低温红外光谱仪研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.LI CH L. Research on space cryogenic infrared spectrometer based on integrated structural/thermal/optical analysis[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science), 2021. (in Chinese). [9] LI SH, LI CH L, XU SH Y, et al. Preflight radiometric calibration of a carbon dioxide spectrometer[J]. Measurement Science and Technology, 2019, 30(5): 055401. doi: 10.1088/1361-6501/ab0c6d [10] 贾文波, 秦天翔, 黄蕴涵, 等. 红外双波段成像光谱仪光学系统的设计与分析[J]. 中国激光,2021,48(23):2311002. doi: 10.3788/CJL202148.2311002JIA W B, QIN T X, HUANG Y H, et al. Design and analysis of optical system of an infrared dual-band imaging spectrometer[J]. Chinese Journal of Lasers, 2021, 48(23): 2311002. (in Chinese). doi: 10.3788/CJL202148.2311002 [11] 赵志刚, 王鑫, 彭廷海, 等. 国外中长波双波段红外成像技术的发展及应用[J]. 红外技术,2020,42(4):312-319. doi: 10.3724/SP.J.7101502294ZHAO ZH G, WANG X, PENG T H, et al. Status quo and application of middle and long wave dual-band infrared imaging technologies in occident[J]. Infrared Technoiogy, 2020, 42(4): 312-319. (in Chinese). doi: 10.3724/SP.J.7101502294 [12] 耿海涛, 虞林瑶, 张葆. 大变倍比制冷型红外双波段变焦光学系统设计[J]. 中国光学(中英文),2024,17(6):1431-1441. doi: 10.37188/CO.2024-0007GENG H T, YU L Y, ZHANG B. Design of cooled infrared dual-band zoom optical system with large-magnification-ratio[J]. Chinese Optics, 2024, 17(6): 1431-1441. (in Chinese). doi: 10.37188/CO.2024-0007 [13] 栗洋洋, 杨加强, 彭晴晴, 等. 制冷型红外双波段广角无热化光学系统设计[J]. 激光与红外,2023,53(5):712-715.LI Y Y, YANG J Q, PENG Q Q, et al. Design of cooled infrared dual-band wide angle athermal optical system[J]. Laser & Infrared, 2023, 53(5): 712-715. (in Chinese). [14] 李刚, 张恒金, 徐沛尧. 红外R-C光学系统设计[J]. 红外技术,2004,26(2):60-63.LI G, ZHANG H J, XU P Y. Design of the infrared R-C optical system[J]. Infrared Technology, 2004, 26(2): 60-63. (in Chinese). [15] 佟亚军, 吴刚, 周全, 等. Offner成像光谱仪的设计方法[J]. 光学学报,2010,30(4):1148-1152. doi: 10.3788/AOS20103004.1148TONG Y J, WU G, ZHOU Q, et al. Design method of Offner-type imaging spectrometer[J]. Acta Optica Sinica, 2010, 30(4): 1148-1152. (in Chinese). doi: 10.3788/AOS20103004.1148 [16] PRIETO-BLANCO X, MONTERO-ORILLE C, COUCE B, et al. Analytical design of an Offner imaging spectrometer[J]. Optics Express, 2006, 14(20): 9156-9168. doi: 10.1364/OE.14.009156 [17] 刘智颖, 高柳絮, 黄蕴涵. offner型连续变焦中波红外光谱成像系统设计[J]. 红外与激光工程,2019,48(7):0718003. doi: 10.3788/IRLA201948.0718003LIU ZH Y, GAO L X, HUANG Y H. Design of continuous zoom medium-wave infrared spectral imaging system based on offner scheme[J]. Infrared and Laser Engineering, 2019, 48(7): 0718003. (in Chinese). doi: 10.3788/IRLA201948.0718003 [18] 王希, 彭晴晴, 徐长彬, 等. 大视场大孔径制冷型红外光学系统设计[J]. 激光与红外,2023,53(10):1575-1578. doi: 10.3969/j.issn.1001-5078.2023.10.017WANG X, PENG Q Q, XU CH B, et al. Refrigerated infrared optical system design with large aperture and wide field-of-view[J]. Laser & Infrared, 2023, 53(10): 1575-1578. (in Chinese). doi: 10.3969/j.issn.1001-5078.2023.10.017 [19] 陈津津, 金宁, 周立钢, 等. 高清晰大变倍比中波红外连续变焦光学系统设计[J]. 红外与激光工程,2013,42(10):2742-2747.CHEN J J, JIN N, ZHOU L G, et al. High resolution middle infrared continuous zoom optical system with large zoom range[J]. Infrared and Laser Engineering, 2013, 42(10): 2742-2747. (in Chinese). [20] 卜和阳, 虞林瑶, 田浩南, 等. 中波红外成像系统冷反射抑制[J]. 中国光学(中英文),2023,16(6):1414-1423. doi: 10.37188/CO.2023-0008BU H Y, YU L Y, TIAN H N, et al. Narcissus suppression of medium-wave infrared imaging system[J]. Chinese Optics, 2023, 16(6): 1414-1423. (in Chinese). doi: 10.37188/CO.2023-0008 [21] 董一优. 折衍射致冷红外光学系统的冷反射特性研究[D]. 长春: 长春理工大学, 2024.DONG Y Y. Characterization of narcissus in refractive diffraction-cooled infrared optical systems[D]. Changchun: Changchun University of Science and Technology, 2024. (in Chinese). [22] 李康, 周峰, 王保华, 等. 制冷型被动式消热差红外光学系统设计[J]. 中国光学(中英文),2023,16(4):853-860. doi: 10.37188/CO.2022-0205LI K, ZHOU F, WANG B H, et al. Passive athermalization design of a cooled infrared optical system[J]. Chinese Optics, 2023, 16(4): 853-860. (in Chinese). doi: 10.37188/CO.2022-0205 [23] 闫佩佩, 樊学武. R-C光学系统设计及杂散光分析[J]. 红外技术,2011,33(4):214-218.YAN P P, FAN X W. Optical design and stray light analysis of R-C system[J]. Infrared Technology, 2011, 33(4): 214-218. (in Chinese). [24] 李西杰, 刘钧, 陈阳. 双波段大变倍比连续共变焦光学系统设计[J]. 光子学报,2016,45(10):1022003. doi: 10.3788/gzxb20164510.1022003LI X J, LIU J, CHEN Y. Design of dual-band, high zoom ratio and continuous Co-focal optical system[J]. Acta Photonica Sinica, 2016, 45(10): 1022003. (in Chinese). doi: 10.3788/gzxb20164510.1022003 [25] 刘博. 制冷型红外双波段3倍变焦光学系统设计[D]. 长春: 长春理工大学, 2020.LIU B. Design of cooling infrared dual-band 3x zoom optical system[D]. Changchun: Changchun University of Science and Technology, 2020. (in Chinese). [26] 刘钧, 张玺斌, 高明. 制冷型中/长红外双波段双视场全景光学系统设计[J]. 应用光学,2016,37(3):456-464. doi: 10.5768/JAO201637.0306001LIU J, ZHANG X B, GAO M. Design of cold MWIR/LWIR infrared dual-band/dual-field panoramic optical system[J]. Journal of Applied Optics, 2016, 37(3): 456-464. (in Chinese). doi: 10.5768/JAO201637.0306001 -