留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳秒脉冲激光对背照式CMOS探测器组件损伤机理研究

王柯 刘扬 王云哲 张引 王振州 邵俊峰

王柯, 刘扬, 王云哲, 张引, 王振州, 邵俊峰. 纳秒脉冲激光对背照式CMOS探测器组件损伤机理研究[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0090
引用本文: 王柯, 刘扬, 王云哲, 张引, 王振州, 邵俊峰. 纳秒脉冲激光对背照式CMOS探测器组件损伤机理研究[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0090
WANG Ke, LIU Yang, WANG Yun-zhe, ZHANG Yin, WANG Zhen-zhou, SHAO Jun-feng. Investigation of laser-induced damage mechanisms in back-illuminated cmos detector modules under nanosecond pulsed irradiation[J]. Chinese Optics. doi: 10.37188/CO.2025-0090
Citation: WANG Ke, LIU Yang, WANG Yun-zhe, ZHANG Yin, WANG Zhen-zhou, SHAO Jun-feng. Investigation of laser-induced damage mechanisms in back-illuminated cmos detector modules under nanosecond pulsed irradiation[J]. Chinese Optics. doi: 10.37188/CO.2025-0090

纳秒脉冲激光对背照式CMOS探测器组件损伤机理研究

cstr: 32171.14.CO.2025-0090
基金项目: 国家自然青年基金(No. 12304286)
详细信息
    作者简介:

    王 柯(1990—),女,吉林长春人,工学博士,讲师,2020年毕业于吉林大学通信工程学院,主要从事模式识别与智能系统方面的研究。E-mail:2020800048@cust.edu.cn

    刘 扬(1988—),男,吉林长春人,工学博士,助理研究员,2018毕业于吉林大学吉林大学机械与航空航天工程学院,主要从事激光辐照效应方面的研究。E-mail:liuyangdk@ciomp.ac.cn

  • 中图分类号: TJ951;O348.11

Investigation of laser-induced damage mechanisms in back-illuminated cmos detector modules under nanosecond pulsed irradiation

Funds: Supported by National Science Foundation for Distinguished Young Scholars of China (No. 12304286 )
  • 摘要:

    为了模拟真实工作场景下激光对可见光成像系统损伤效应,将滤光片和背照式CMOS探测器共同构成探测器组件作为靶材,探讨两种不同波长的纳秒脉冲激光对探测器组件的损伤效应。首先,通过实验的方式获得532 nm及1064 nm纳秒脉冲激光对CMOS组件的典型损伤效应数据。然后,利用有限元仿真方法建立激光与探测器相互作用的模型,以解决实验中无法实时观测探测器内部的温度与应力变化和分布的问题,在获得损伤效应数据的同时将传统实验难以观察的温度/应力集中现象“可视化”,提供可靠的参考阈值数据。通过仿真及实验研究表明损伤机理为热-力联合损伤,并得了如下的损伤阈值,532 nm波段下各阶段损伤阈值为30.06 mJ/cm2、38.93 mJ/cm2、56.20 mJ/cm2和102.17 mJ/cm21064 nm波段下为38.62 mJ/cm2、50.09 mJ/cm2、116.31 mJ/cm2和137.73 mJ/cm2

     

  • 图 1  CMOS探测器基本结构示意图

    Figure 1.  Schematic Diagram of the Basic Structure of a CMOS Detector

    图 2  脉冲激光辐照探测器组件实验原理

    Figure 2.  Principle of pulsed laser irradiation experiments on detector assemblies

    图 3  探测器组件实物图

    Figure 3.  Photograph of the detector assembly

    图 4  滤光片光谱曲线 (a) 为前膜和后膜各自光谱曲线, (b) 为前膜和后膜组合光谱曲线

    Figure 4.  Spectral curve of the filter (a) spectral curves of front and rear films, (b) spectral curve of front film and rear film combination)

    图 5  532 nm纳秒激光辐照后,不同损伤程度的探测器接收图像和芯片损伤形貌

    Figure 5.  Detector images and chip damage morphology at different damage levels after 532 nm nanosecond laser irradiation

    图 6  1064 nm纳秒激光辐照后,不同损伤程度的探测器接收图像和芯片损伤形貌

    Figure 6.  Detector images and chip damage morphology at different damage levels after 1064 nm nanosecond laser irradiation

    图 7  探测器组件损伤实验得到的滤光片损伤形貌

    Figure 7.  Damage morphology of the filter obtained from the detector component damage experiment

    图 8  背照式CMOS探测器二维简化示意图

    Figure 8.  Simplified two-dimensional schematic of a back-illuminated CMOS detector

    图 9  532 nm纳秒脉冲激光损伤CMOS探测器仿真结果。(a) 最高温度分布图;(b) 最高温度等温线图;(c) 各层最高温度曲线

    Figure 9.  Simulation results of CMOS detector damage by 532 nm nanosecond pulse laser. (a) Maximum temperature distribution; (b) Isothermal map of maximum temperature; (c) Maximum temperature curves for each layer

    图 10  532 nm激光损伤CMOS探测器应力应变仿真结果。(a)最高应力分布图;(b)最高位移分布图;(c)各层最高应力曲线

    Figure 10.  Stress-strain simulation results of CMOS detector damage by 532 nm laser. (a) Maximum stress distribution; (b) Maximum displacement distribution; (c) Maximum stress curves for each layer

    图 11  最大位移变化曲线

    Figure 11.  Maximum displacement variation curve

    图 12  1064 nm纳秒脉冲激光损伤CMOS探测器仿真结果。(a) 最高温度分布图;(b) 最高温度等温线图;(c) 各层最高温度曲线

    Figure 12.  Simulation results of CMOS detector damage by 1064 nm nanosecond pulse laser. (a) Maximum temperature distribution; (b) Isothermal map of maximum temperature; (c) Maximum temperature curves for each layer

    图 13  1064 nm激光损伤CMOS探测器应力应变仿真结果。(a) 最高应力分布图;(b) 最高位移分布图;(c) 各层最高应力曲线

    Figure 13.  Stress-strain simulation results of CMOS detector damage by 1064 nm laser. (a) Maximum stress distribution; (b) Maximum displacement distribution; (c) Maximum stress curves for each layer

    图 14  最大位移变化曲线

    Figure 14.  Maximum displacement variation curve

    表  1  激光对光电载荷探测器组件的损伤实验主要设备

    Table  1.   Main Experimental Equipment for Laser-Induced Damage Testing on Electro-Optical Payload Detector Assemblies

    设备名称 设备型号 设备参数
    激光器Nimma-900单脉冲<900 mJ 波长532/1064 nm
    脉宽9 ns
    能量计Ophir PD-10测量范围1 nJ~13 μJ
    Ophir PE-50测量范围10 μJ~10 J
    格兰棱镜
    L2
    大恒GCL-070210工作波长350−2500 nm;通光孔径
    10 mm;消光比105∶1
    半波片L1大恒GCL-060512工作波长532 nm;透过率T>98%
    大恒GCL-060517工作波长1064nm;透过率T>98%
    扩束器自研定制工作波长532 nm 扩束倍数4×
    LBTEK BEF03-B工作波段650~1100 nm 扩束倍数3×
    下载: 导出CSV

    表  2  海康威视MV-CA060-11GM基本参数

    Table  2.   Basic specifications of the Hikvision MV-CA060-11GM

    参数海康威视MV-CA060-11GM
    传感器类型CMOS,卷帘快门
    传感器型号Sony IMX178
    像元尺寸2.4 μm × 2.4 μm
    最大帧率17 fps
    分辨率3072×2048
    增益0 dB~20 dB
    曝光时间27 μs~2.5 sec
    下载: 导出CSV

    表  3  海康威视MV-CA060-11GM基本参数

    Table  3.   Basic specifications of the Hikvision MV-CA060-11GM

    PI Si Al
    恒压热容 J/(kg·K) 1510 700 900
    密度 kg/m³ 1190 2329 2700
    导热系数 W/(m·K) 0.3 130 238
    杨氏模量 Pa 3.2×109 1.7×1011 7×1010
    泊松比 0.35 0.28 0.33
    热膨胀系数 1/K 2×10−5 2.6×10−6 2.3×10−5
    下载: 导出CSV

    表  4  CMOS探测器实验与仿真损伤阈值(单位:mJ/cm2

    Table  4.   Damage threshold of CMOS detector: experimental and simulation results (Dimension: mJ/cm2)

    波长实验点损伤阈值仿真点损伤阈值
    532 nm30.0652.79
    1064 nm38.6278.02
    下载: 导出CSV
  • [1] KHATIRI M, PANAHPOUR A, RAZAGHI H, et al. Morphology study and threshold measurement of laser induced damage of nano-porous antireflective silica thin films in nano- and femtosecond pulse regimes[J]. Indian Journal of Physics, 2021, 95(4): 639-645. doi: 10.1007/s12648-020-01725-3
    [2] 崔云, 张革, 赵元安, 等. 激光薄膜元件内微缺陷的表征分析[J]. 中国激光,2023,50(2):0203101. doi: 10.3788/CJL220568

    CUI Y, ZHANG G, ZHAO Y A, et al. Characterization analysis of micro-defects in thin-film components for laser systems[J]. Chinese Journal of Lasers, 2023, 50(2): 0203101. (in Chinese). doi: 10.3788/CJL220568
    [3] 向程江, 刘晓凤, 陶春先, 等. 1064 nm纳秒激光辐照下HfO2/SiO2增透膜损伤的动态过程研究[J]. 中国激光,2024,51(8):0803101. doi: 10.3788/CJL231071

    XIANG CH J, LIU X F, TAO CH X, et al. Dynamic damage process of HfO2/SiO2 anti-reflection coatings under 1064 nm nanosecond laser irradiation[J]. Chinese Journal of Lasers, 2024, 51(8): 0803101. (in Chinese). doi: 10.3788/CJL231071
    [4] 玛丽娅, 李豫东, 郭旗, 等. CMOS有源像素图像传感器的电子辐照损伤效应研究[J]. 发光学报,2017,38(2):182-187. doi: 10.3788/fgxb20173802.0182

    MA L Y, LI Y D, GUO Q, et al. Electron beam radiation effects on CMOS active pixel sensor[J]. Chinese Journal of Luminescence, 2017, 38(2): 182-187. (in Chinese). doi: 10.3788/fgxb20173802.0182
    [5] 韩敏, 聂劲松, 豆贤安, 等. 基于激光不同加载方式下CCD损伤特性的时间演化规律[J]. 发光学报,2019,40(6):788-794. doi: 10.3788/fgxb20194006.0788

    HAN M, NIE J S, DOU X A, et al. Temporal evolution characteristics of CCD detector based on different laser loading methods[J]. Chinese Journal of Luminescence, 2019, 40(6): 788-794. (in Chinese). doi: 10.3788/fgxb20194006.0788
    [6] WESTGATE C, JAMES D. Visible-band nanosecond pulsed laser damage thresholds of silicon 2D imaging arrays[J]. Sensors, 2022, 22(7): 2526. doi: 10.3390/s22072526
    [7] THÉBERGE F, AUCLAIR M, DAIGLE J F, et al. Damage thresholds of silicon-based cameras for in-band and out-of-band laser expositions[J]. Applied Optics, 2022, 61(10): 2473-2482. doi: 10.1364/AO.450317
    [8] 朱孟真, 刘云, 米朝伟, 等. 复合激光损伤CMOS图像传感器实验研究[J]. 红外与激光工程,2022,51(7):20210537. doi: 10.3788/IRLA20210537

    ZHU M ZH, LIU Y, MI CH W, et al. Experimental study on a CMOS image sensor damaged by a composite laser[J]. Infrared and Laser Engineering, 2022, 51(7): 20210537. (in Chinese). doi: 10.3788/IRLA20210537
    [9] WANG Y ZH, ZHANG Y F, LIU Y, et al. Investigation on interference effects of CCD detectors by 1064 nm pulsed/continuous lasers[J]. Optics Express, 2025, 33(5): 9383-9399. doi: 10.1364/OE.552013
    [10] WANG Y ZH, CHENG X ZH, SHAO J F, et al. The damage threshold of multilayer film induced by femtosecond and picosecond laser pulses[J]. Coatings, 2022, 12(2): 251. doi: 10.3390/coatings12020251
    [11] LIU Y, ZHOU F, WANG Y ZH, et al. Experimental study on damage effect of mid-infrared pulsed laser on charge coupled device (CCD) and HgCgTe detectors[J]. Sensors, 2024, 24(13): 4380. doi: 10.3390/s24134380
    [12] 王云哲, 张鲁薇, 邵俊峰, 等. 脉冲激光对石英基底Ta2O5/SiO2滤光膜的损伤效应研究[J]. 红外与激光工程,2023,52(3):20220482. doi: 10.3788/IRLA20220482

    WANG Y ZH, ZHANG L W, SHAO J F, et al. Damage effect of pulsed laser on Ta2O5/SiO2 filter film on quartz substrate[J]. Infrared and Laser Engineering, 2023, 52(3): 20220482. (in Chinese). doi: 10.3788/IRLA20220482
    [13] QIU P, ZHAO Y, ZHENG J, et al. Research on performances of back-illuminated scientific CMOS for astronomical observations[J]. Research in Astronomy and Astrophysics, 2021, 21(10): 268-278.
    [14] ZHANG Y, CHEN M, LI X, et al. Comprehensive review on laser damage mechanisms and thresholds of optical sensors[J]. Progress in Quantum Electronics, 2021, 75: 100304. (查阅网上资料, 未找到本条文献信息, 请确认).
    [15] International Organization for Standardization. ISO 21254-1: 2011 Lasers and laser-related equipment—test methods for laser-induced damage threshold—part 1: definitions and general principles[S]. Geneva: ISO, 2011.
    [16] BERGMAN T L, LAVINE A S, INCROPERA F P, et al. Fundamentals of Heat and Mass Transfer[M]. 8th ed. New York: Wiley Press, 2017.
    [17] ZHANG H X, LI Y F, CHANG H, et al. Investigation of the damage profiles and mechanisms of CMOS devices subjected to continuous and pulsed laser exposure[J]. Applied Physics B, 2025, 131(4): 93. doi: 10.1007/s00340-025-08427-w
    [18] BI W J, ZHANG Y C, LIU Q, et al. Failure mechanisms of a silicon-based CMOS image sensors under 1550 nm nanosecond laser[J]. Optical Express, 2024, 32(2): 1234-1250. (查阅网上资料, 未找到本条文献信息, 请确认).
    [19] SCHWARZ B, RITT G, KOERBER M, et al. Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems[J]. Optical Engineering, 2017, 56(3): 034108. doi: 10.1117/1.OE.56.3.034108
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-08-21

目录

    /

    返回文章
    返回