留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development of a doppler asymmetric spatial heterodyne interferometer for ground-based wind field detection at the 557.7 nm wavelength

LIU Huan JIANG Lun ZHANG Xiao-fei FU Yun SONG Yan-song TONG Shou-feng LIU Xian-zhu

刘欢, 江伦, 张晓菲, 付芸, 宋延嵩, 佟首峰, 刘显著. 557.7 nm波段地基探测风场的多普勒非对称空间外差干涉仪研制[J]. 中国光学(中英文), 2023, 16(5): 1226-1242. doi: 10.37188/CO.EN-2022-0018
引用本文: 刘欢, 江伦, 张晓菲, 付芸, 宋延嵩, 佟首峰, 刘显著. 557.7 nm波段地基探测风场的多普勒非对称空间外差干涉仪研制[J]. 中国光学(中英文), 2023, 16(5): 1226-1242. doi: 10.37188/CO.EN-2022-0018
LIU Huan, JIANG Lun, ZHANG Xiao-fei, FU Yun, SONG Yan-song, TONG Shou-feng, LIU Xian-zhu. Development of a doppler asymmetric spatial heterodyne interferometer for ground-based wind field detection at the 557.7 nm wavelength[J]. Chinese Optics, 2023, 16(5): 1226-1242. doi: 10.37188/CO.EN-2022-0018
Citation: LIU Huan, JIANG Lun, ZHANG Xiao-fei, FU Yun, SONG Yan-song, TONG Shou-feng, LIU Xian-zhu. Development of a doppler asymmetric spatial heterodyne interferometer for ground-based wind field detection at the 557.7 nm wavelength[J]. Chinese Optics, 2023, 16(5): 1226-1242. doi: 10.37188/CO.EN-2022-0018

557.7 nm波段地基探测风场的多普勒非对称空间外差干涉仪研制

详细信息
  • 中图分类号: TH.744

Development of a doppler asymmetric spatial heterodyne interferometer for ground-based wind field detection at the 557.7 nm wavelength

doi: 10.37188/CO.EN-2022-0018
Funds: Supported by National Key Research and Development Plan Project (No. 2022YFB3902500)
More Information
    Author Bio:

    Liu Huan (1997—), female, born in Jilin, Jilin Province master candidate, In June 2023, she received her master's degree in engineering from Changchun University of Science and Technology, She mainly engaged in Doppler asymmetric spatial heterodynetechnology, optical engineering research. E-mail: liu198804161997@163.com

    Jiang Lun (1984—), male, Changchun, Jilin Province, Doctoral, associate professor and doctoral supervisor, In 2012, he received his PhD from Changchun Institute of Optics, Fine Mechanicsand Physics, Chinese Academy of Sciences, mainly engaged in optical system design, space optics and space optical communication technology. E-mail: jlciomp@163.com

    Corresponding author: jlciomp@163.com
  • 摘要:

    为探测中层大气风场信息,研制了一台具有热补偿特性的大集光率(AΩ)、高信噪比(Signal-to-Noise Ratio, SNR)的地基多普勒非对称空间外差(Doppler Asymmetric Spatial Heterodyne, DASH)干涉仪。针对557.7 nm的氧原子气辉谱线,制定了DASH干涉仪的详细参数和指标。系统采用扩视场和消热差设计,半视场角达到2.815°,集光率为0.09525 cm2sr,系统信噪比在113.75左右,经过热补偿设计后,最终光程差随温度变化(dΔd0/dT)的数值仅为2.224×10−7 mm/°C。根据相应参数设计优化了光学系统,前置光学系统和探测器光学系统分别采用像方远心和双远心结构,各项指标均满足探测要求。为验证设计结果,搭建了地基DASH干涉仪实验平台,进行室内以及地基室外实验,最终得到了明显的干涉条纹。上述结果证明DASH干涉仪的系统设计是合理的,系统的信噪比和集光率满足检测要求。

     

  • Figure 1.  Diagram of the DASH interferometer structure

    Figure 2.  Curves of the modulation and phase difference varying with optical path difference of the 557.7 nm spectral line at 90–110 km

    Figure 3.  Curves of the modulation and phase difference varying with optical path difference of the 557.7 nm spectral line at 150–300 km

    Figure 4.  Plot of the optical path difference versus the interferogram intensity difference

    Figure 5.  Optical path diagram of the interference module

    Figure 6.  (a) Relationship between signal to noise ratio and pixel position; (b) graph of variation of wind speed error with SNR

    Figure 7.  The MTF curves of the entrance optics

    Figure 8.  (a) MTF of the exit optics and (b) dot chart of the exit optics

    Figure 9.  (a) Two-dimensional system diagram; (b) three-dimensional system diagram

    Figure 10.  Real image of the interferometer

    Figure 11.  Real image of the narrow band filter

    Figure 12.  (a) Schematic diagram of the laboratory debugging device; (b) photograph of the laboratory debugging device

    Figure 13.  Streaks made by krypton lamps in the laboratory

    Figure 14.  Integrated ground-based DASH interferometer

    Figure 15.  Photograph of the ground experiment setup

    Figure 16.  Night airglow interferogram

    Figure 17.  Interferogram of krypton lamp on September 27

    Figure 18.  Interferogram of night airglow on September 27

    Figure 19.  Schematic diagram of wind speed simulation

    Figure 20.  The corresponding interferogram is 1810, 2021 and 2203 r/min, respectively

    Table  3.   Basic parameters of DASH interferometer

    ParameterSystem indicators
    Littrow wavelength557.7 nm
    Half of view angle2.815°
    Diameter of the pupil40 mm
    Field of view
    extension prism
    MaterialsH-LAK2A
    Angulus parietalis8.7424°
    Wedged spacersMaterialsFused silica (spacers1);
    H-FK61 (spacers 2)
    ThicknessFused silica (spacers1);
    H-FK61 (spacers 2)
    Beam splitterSplitting ratio1∶1
    Asymmetrical20.363 mm
    MaterialsH-K9LAGT
    GratingsGrating Littrow angle9.631°
    Grating diffraction order1
    Grating effective width13.69 mm
    MaterialsFused silica
    Lines600 gr/mm
    下载: 导出CSV

    Table  1.   DASH system parameter list

    System ParameterValue
    Transmittance of an optical system: τtot(σ).0.07
    Detector quantum efficiency: η(σ)0.9
    Optical system: F #3.862
    Detector pixel size: d13 μm
    Dark current ηdark (refrigeration
    temperature dd0/dT:−80 °C)
    0.00025
    Readout noise: σread1e-/p·s-1
    下载: 导出CSV

    Table  2.   Design indices of the dual telecentric optical system

    ParameterSystem indicators
    Wavelength557.7 nm
    Magnification−0.9715
    F#9
    Distortion2.4×10−5
    Back focal length30 mm
    Telecentricity<7.0×10−3
    下载: 导出CSV

    Table  4.   DASH system specifications

    ParameterSystem indicators
    Resolving power16402.941
    measuring range90-110 km (Height of airglow)
    Resolution of measurement1.0933 cm−1 (0.034 nm)
    $\dfrac{ {{\rm{d}}\Delta { d_0} } }{ { {\rm{d} }T} }$2.224×10−7 mm/°C
    Etendue (AΩ)0.09525 cm2sr
    SNR113.75
    Decomposition
    of precision
    Temperature0.05 rad/°C
    SNRSNR>60,wind speed error <10−4 m/s
    Inversion accuracy (Nuttall
    window function, FWHM=10)
    0.00064 m/s
    下载: 导出CSV
  • [1] WANG Y J, WANG Y M, WANG H M. Simulation of ground-based Fabry-Perot interferometer for the measurement of upper atmospheric winds[J]. Chinese Journal of Geophysics, 2014, 57(6): 1732-1739. (in Chinese) doi: 10.6038/cjg20140605
    [2] SHEPHERD G G, THUILLIER G, GAULT W A, et al. WINDII the wind imaging interferometer on theupper atmosphere research satellite[J]. Journal of Geophysical Research:Atmospheres, 1993, 98(D6): 10725-10750.
    [3] ENGLERT C R, HARLANDER J M, BABCOCK D D, et al.. Doppler asymmetric spatial heterodyne spectroscopy (DASH): an innovative concept for measuring winds in planetary atmospheres[C]. Proceedings of SPIE 6303, Atmospheric Optical Modeling, Measurement, and Simulation II, SPIE, 2006: 63030T.
    [4] ENGLERT C R, BABCOCK D D, HARLANDER J M. Doppler asymmetric spatial heterodyne spectroscopy (DASH): concept and experimental demonstration[J]. Applied Optics, 2007, 46(29): 7297-7307. doi: 10.1364/AO.46.007297
    [5] HARLANDER J M, ENGLERT C R, BABCOCK D D, et al. Design and laboratory tests of a Doppler Asymmetric Spatial Heterodyne (DASH) interferometer for upper atmospheric wind and temperature observations[J]. Optics Express, 2010, 18(25): 26430-26440. doi: 10.1364/OE.18.026430
    [6] BABCOCK D D, HARLANDER J M, ENGLERT C R, et al.. Doppler asymmetric spatial heterodyne (DASH) interferometer from flight concept to field campaign[C]. Proceedings of the Fourier Transform Spectroscopy 2011, Optica Publishing Group, 2011.
    [7] HARLANDER J M, ENGLERT C R, BROWN C M, et al.. Design and laboratory tests of the Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI) on the ionospheric connection explorer (ICON) satellite[C]. Proceedings of the Fourier Transform Spectroscopy 2015, Optica Publishing Group, 2015.
    [8] ENGLERT C R, HARLANDER J M, BROWN C M, et al.. MIGHTI: the spatial heterodyne instrument for thermospheric wind measurements on board the ICON mission[C]. Proceedings of the Fourier Transform Spectroscopy 2015, Optica Publishing Group, 2015.
    [9] NING T. Doppler wind simulator for spatial heterodyne observations of wind[D]. York: York University, 2012.
    [10] SOLHEIM B, BROWN S, SIORIS C, et al. SWIFT-DASH: spatial heterodyne spectroscopy approach to stratospheric wind and ozone measurement[J]. Atmosphere—Ocean, 2015, 53(1): 50-57.
    [11] 沈静. 中高层大气风场探测多普勒非对称空间外差技术研究[D]. 合肥: 中国科学技术大学, 2017.

    SHEN J. Doppler asymmetric spatial heterodyne technique for wind detection in the upper atmosphere[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese)
    [12] 况银丽. 基于非对称空间外差干涉仪的多普勒测速技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2020.

    KUANG Y L. Research on radial velocity measurement technology based on Doppler asymmetric space heterodyne interferometer[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2020. (in Chinese)
    [13] FEI X Y, FENG Y T, BAI Q L, et al. Optical system design of a Co-path Doppler asymmetric spatial heterodyne interferometer with two fields of view[J]. Acta Optica Sinica, 2015, 35(4): 0422003. (in Chinese) doi: 10.3788/AOS201535.0422003
    [14] 陈洁婧. 多普勒差分干涉光谱仪风速反演技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2017.

    CHEN J J. Study on Doppler asymmetric spatial heterodyne spectrometer in wind velocity retrieval[D]. Xi’an: Xi'an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2017. (in Chinese)
    [15] 费小云. 星载测风双视场准共路多普勒外差干涉仪基础问题研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2015.

    FEI X Y. Basic study on a Co-path Doppler asymmetric spatial heterodyne spectroscopy interferometer with two fields of view for atmospheric wind vector observation form satellite platforms[D]. Xi’an: Xi'an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2015. (in Chinese)
    [16] GAO H, XU J Y, YUAN W. A Method of Inversing the Peak Density of Atomic Oxygen Vertical Distribution in the MLT Region From the OI (557.7nm) Night Airglow Intensity[J]. Space Science Journal, 2005, 25(5): 6. doi: 10.1080/02726340590910084.
    [17] KHOMICH V Y, SEMENOV A I, SHEFOV N N. Airglow as an Indicator of Upper Atmospheric Structure and Dynamics[M]. Berlin Heidelberg: Springer, 2008.
    [18] BELL R J. Introductory Fourier Transform Spectroscopy[M]. New York: Academic Press, 1972: 16-32.
    [19] FU Q, XIANG L B, JING J J. System signal-to-noise ratio analysis based on imaging chain model in multispectral remote sensing[J]. Acta Optica Sinica, 2012, 32(2): 0211001. (in Chinese) doi: 10.3788/AOS201232.0211001
    [20] SAPTARI V. Fourier-Transform Spectroscopy Instrumentation Engineering[M]. Bellingham: SPIE, 2003.
    [21] FENG Y T, BAI Q L, WANG Y M, et al. Theory and method for designing field-widened prism of spatial heterodyne spectrometer[J]. Acta Optica Sinica, 2012, 32(10): 1030001. (in Chinese) doi: 10.3788/AOS201232.1030001
    [22] 汪丽. 干涉法大气风场探测技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2007.

    WANG L. Study on wind measurement of atmosphere by interferometry technology[D]. Xi’an: Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2007. (in Chinese)
    [23] MARR K D, ENGLERT C R, HARLANDER J M, et al. Thermal sensitivity of DASH interferometers: the role of thermal effects during the calibration of an Echelle DASH interferometer[J]. Applied Optics, 2013, 52(33): 8082-8088. doi: 10.1364/AO.52.008082
    [24] XUE Q SH, WANG SH R, LI F T, et al. Analysis and experimental validation of sgnal-to-noise for limb imaging sectrometer[J]. Spectroscopy and Spectral Analysis, 2010, 30(6): 1697-1701. (in Chinese)
    [25] CHEN ZH L, LIU Y ZH, FEI M M, et al. Design of industrial double telecentric optical lens with large field of view[J]. Journal of Xian Technological University, 2018, 38(5): 444-450. (in Chinese)
    [26] LI Y T, FU Y G, WANG L J, et al.. Design of full-spectrum imaging optical system for large-aperture space-based platform[J]. Chinese Optics, 2021, 14: 9. (in Chinese) doi: 10.37188/CO.2019-0255
    [27] WANG L Y, LI Y Q, CAI R. Noise suppression of laser jitter in space laser interferometer[J]. Chinese Optics (English and Chinese), 2021, 14(6): 1426-1434. (in Chinese) doi: 10.37188/CO.2021-0045
    [28] LI X Y, REN G X, LV M R, et al. Spectrometer with high spectral camera model in the laboratory research[J]. Journal of analytical chemistry, 2021. (in Chinese) doi: 10.19756/j.issn.0253-3820.191165
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  249
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-13
  • 修回日期:  2022-12-08
  • 网络出版日期:  2023-03-15

目录

    /

    返回文章
    返回